English

Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.

Sum

Solution

The equation of the given curve is y = x2 − 2x + 7

On differentiating with respect to x, we get:

`"dy"/"dx" = 2x - 2`

The equation of the line is 2x − y + 9 = 0.

2x − y + 9 = 0 ⇒ y = 2x + 9

This is of the form y = mx + c.

∴ Slope of the line = 2

If a tangent is parallel to the line 2x − y + 9 = 0, then the slope of the tangent is equal to the slope of the line.

Therefore, we have:

2 = 2x − 2

⇒ 2x = 4

⇒ x = 2

Now, x = 2

⇒ y = 4 - 4 + 7 = 7

Thus, the equation of the tangent passing through passing through (2, 7) is given by,

⇒ y - 7 = 2 (x - 2)

⇒ y - 2x - 3 = 0

Hence, the equation of the tangent line to the given curve (which is parallel to line 2x - y + 9 = 0) is y - 2x - 3 = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.3 [Page 212]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.3 | Q 15. (a) | Page 212

RELATED QUESTIONS

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


Which of the following represent the slope of normal?


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×