English

Prove that the curves xy = 4 and x2 + y2 = 8 touch each other. - Mathematics

Advertisements
Advertisements

Question

Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.

Sum

Solution

Given circles are xy = 4   .....(i)

And x2 + y2 = 8   .....(ii)

Differentiating equation (i) w.r.t., x

`x * "dy"/"dx" + y * 1` = 0

⇒ `"dy"/"dx" = - y/x`

⇒ m1 = `- y/x`  .....(iii)

Where, m1 is the slope of the tangent to the curve.

Differentiating equation (ii) w.r.t. x

`2x + 2y * "dy"/"dx"` = 0

⇒ `"dy"/"dx" = - x/y`

⇒ m2 = `- x/y`

Where, m2 is the slope of the tangent to the circle.

To find the point of contact of the two circles

m1 = m2

⇒ `- y/x = - x/y`

⇒  x2 = y2

Putting the value of y2 in equation (ii)

x2 + x2 = 8

⇒ 2x2 = 8

⇒ x2 = 4

∴ x = ± 2

∵ x2 = y2

⇒ y = ± 2

∴ The point of contact of the two circles are (2, 2) and (– 2, 2).

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Exercise [Page 136]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Exercise | Q 13 | Page 136

RELATED QUESTIONS

 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The equation of normal to the curve y = tanx at (0, 0) is ______.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×