English

The Angle of Intersection of the Parabolas Y2 = 4 Ax and X2 = 4ay at the Origin is - Mathematics

Advertisements
Advertisements

Question

The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .

Options

  • π/6

  • π/3

  • π/2

  • π/4

MCQ

Solution

π/2

 

\[\text { Given }: \]

\[ y^2 = 4ax . . . \left( 1 \right)\]

\[ x^2 = 4ay . . . \left( 2 \right)\]

\[\text { Point } =\left( 0, 0 \right)\]

\[\text { On differentiating (1) w.r.t.x,we get }\]

\[2y \frac{dy}{dx} = 4a\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2a}{y}\]

\[ \Rightarrow m_1 = \infty \]

\[\text { Now, on differentiating (2) w.r.t.x, we get }\]

\[2x = 4a\frac{dy}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{x}{2a} = 0\]

\[ \therefore \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\infty}{1 + 0} \right| = \infty \]

\[ \Rightarrow \theta = \tan^{- 1} \infty = \frac{\pi}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.5 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.5 | Q 22 | Page 43

RELATED QUESTIONS

 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


The curve y = `x^(1/5)` has at (0, 0) ______.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


At (0, 0) the curve y = x3 + x


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×