Advertisements
Advertisements
Question
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Solution
\[\text { Given: }y = 7 x^3 + 11\]
\[ \therefore \frac{dy}{dx} = 21 x^2 \]
\[\text { Now,} \]
\[\text { Slope of the tangent at } (x = 2) = \left( \frac{dy}{dx} \right)_{x = 2} = 21 \left( 2 \right)^2 = 84\]
\[\text { Slope of the tangent at } (x = - 2) = \left( \frac{dy}{dx} \right)_{x = - 2} = 21 \left( - 2 \right)^2 = 84\]
Both slopes are the same. Hence, the tangents at points x = 2 and x = −2 are parallel.
APPEARS IN
RELATED QUESTIONS
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the angle of intersection of the curves y2 = x and x2 = y.
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
The curve y = `x^(1/5)` has at (0, 0) ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Let `y = f(x)` be the equation of the curve, then equation of normal is
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.