Advertisements
Advertisements
Question
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Solution
\[\sqrt{x} + \sqrt{y} = a\]
\[\text { Differentiating both sides w.r.t.x}, \]
\[ \Rightarrow \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \sqrt{y}}{\sqrt{x}}\]
\[\text { Given } \left( x_1 , y_1 \right) = \left( \frac{a^2}{4}, \frac{a^2}{4} \right)\]
\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( \frac{a^2}{4}, \frac{a^2}{4} \right) =\frac{- \sqrt{\frac{a^2}{4}}}{\sqrt{\frac{a^2}{4}}}=-1\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{a^2}{4} = - 1\left( x - \frac{a^2}{4} \right)\]
\[ \Rightarrow y - \frac{a^2}{4} = - x + \frac{a^2}{4}\]
\[ \Rightarrow x + y = \frac{a^2}{2}\]
APPEARS IN
RELATED QUESTIONS
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is: