English

The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______. - Mathematics

Advertisements
Advertisements

Question

The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.

Options

  • (2, –2), (–2, –34)

  • (2, 34), (–2, 0)

  • (0, 34), (–2, 0)

  • (2, 2), (–2, 34)

MCQ
Fill in the Blanks

Solution

The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are (2, 2), (–2, 34).

Explanation:

Given that y = x3 – 12x + 18

Differentiating both sides w.r.t. x, we have

⇒ `"dy"/"dx"` = 3x2 – 12

Since the tangents are parallel to x-axis, then `"dy"/"dx"` = 0

∴ 3x2 – 12 = 0

⇒ x = ± 2

∴ `y_(x = 2)` = (2)3 – 12(2) + 18

= 8 – 24 + 18

= 2

`y_(x = -2)` = (– 2)3 – 12 (– 2) + 18

= – 8 + 24 + 18

= 34

∴ Points are (2, 2) and (– 2, 34).

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Exercise [Page 139]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Exercise | Q 42 | Page 139

RELATED QUESTIONS

Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


Which of the following represent the slope of normal?


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×