English

Find the Equation of the Tangent to the Curve Y = √ 3 X − 2 Which is Parallel to the 4x − 2y + 5 = 0 ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent to the curve  y=3x2 which is parallel to the 4x − 2y + 5 = 0 ?

Sum

Solution

Slope of the given line is 2

 Let (x1,y1) be the point where the tangent is drawn to the curvey =3x2

 Since, the point lies on the curve .

 Hence ,y1=3x12...(1)

 Now ,y=3x2

dydx=323x2

 Slope of tangent at(x1,y1)=323x12

 Given that 

 Slope of tangent = slope of the given line 

323x12=2

3=43x12

9=16(3x12)

916=3x12

3x1=916+2=9+3216=4116

x1=4148

 Now,y1=123482=2748=916=34..............[ From (1)]

(x1,y1)=(4148,34)

 Equation of tangent is ,

yy1=m(xx1)

y34=2(x4148)

4y34=2(48x4148)

24y18=48x41

48x24y23=0

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 16 | Page 28

RELATED QUESTIONS

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the slope of the tangent and the normal to the following curve at the indicted point y=x3 at x=4 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the points on the curvex24+y225=1 at which the tangent is  parallel to the y-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve x2a2+y2b2=1 and x2 + y2 = ab ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  (1,22) ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Find the condition for the following set of curve to intersect orthogonally x2a2+y2b2=1 and x2A2y2B2=1 ?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


Write the equation of the tangent drawn to the curve y=sinx at the point (0,0) ?


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


The point on the curve y2 = x, where the tangent makes an angle of π4 with x-axis is ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points (3cosθ,3sinθ) and (-3sinθ,3cosθ);θ(0,π2); then 2cotβsin2θ is equal to ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.