Advertisements
Advertisements
Question
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Solution
The slope of the y-axis is \[\infty\] Now, let (x1, y1) be the required point.
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence }, \frac{{x_1}^2}{4} + \frac{{y_1}^2}{25} = 1 . . . \left( 1 \right)\]
\[\text{ Now }, \frac{x^2}{4} + \frac{y^2}{25} = 1 \]
\[ \therefore \frac{2x}{4} + \frac{2y}{25}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{2y}{25}\frac{dy}{dx} = \frac{- x}{2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 25x}{4y}\]
\[\text { Now, }\]
\[\text { Slope of the tangent at}\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- 25 x_1}{4 y_1}\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)=\text { Slope of they-axis [Given] }\]
\[ \therefore \frac{- 25 x_1}{4 y_1} = \infty \]
\[ \Rightarrow \frac{4 y_1}{- 25 x_1} = 0\]
\[ \Rightarrow y_1 = 0\]
\[\text { Also,} \]
\[\frac{{x_1}^2}{4} = 1 [\text { From eq. } (1)]\]
\[ \Rightarrow {x_1}^2 = 4\]
\[ \Rightarrow x_1 = \pm 2\]
\[\text { Thus, the required points are }\left( 2, 0 \right)\text { and }\left( - 2, 0 \right).\]
APPEARS IN
RELATED QUESTIONS
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.