Advertisements
Advertisements
Question
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
Options
\[\tan^{- 1} \frac{4}{3}\]
\[\tan^{- 1} \frac{3}{4}\]
90°
45°
Solution
\[\tan^{- 1} \frac{3}{4}\]
\[\text { Given }: \]
\[ y^2 = x . . . \left( 1 \right)\]
\[ x^2 = y . . . \left( 2 \right)\]
\[\text { Point} = \left( 1, 1 \right)\]
\[\text { On differentiating (1) w.r.t. x, we get }\]
\[2y \frac{dy}{dx} = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2y}\]
\[ \Rightarrow m_1 = \frac{1}{2}\]
\[\text { On differentiating (2) w.r.t.x, we get }\]
\[2x = \frac{dy}{dx}\]
\[ \Rightarrow m_2 = 2\left( 1 \right) = 2\]
\[\text { Now,} \]
\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{1}{2} - 2}{1 + \frac{1}{2} \times 2} \right| = \frac{3}{4}\]
\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{3}{4} \right)\]
APPEARS IN
RELATED QUESTIONS
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Find the angle of intersection of the curves y2 = x and x2 = y.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.