English

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point Y = 2x2 − 3x − 1 at (1, −2) ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?

Solution

\[y=2 x^2 -3x-1\]

\[\text { Differentiating both sides w.r.t.x,} \]

\[\frac{dy}{dx} = 4x - 3\]

\[\text { Given } \left( x_1 , y_1 \right) = \left( 1, - 2 \right)\]

\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\left( 1, - 2 \right) =4-3=1\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m\left( x - x_1 \right)\]

\[ \Rightarrow y + 2 = 1 \left( x - 1 \right)\]

\[ \Rightarrow y + 2 = x - 1\]

\[ \Rightarrow x - y - 3 = 0\]

\[\text { Equation of normal is },\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y + 2 = - 1 \left( x - 1 \right)\]

\[ \Rightarrow y + 2 = - x + 1\]

\[ \Rightarrow x + y + 1 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 3.04 | Page 27

RELATED QUESTIONS

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


At (0, 0) the curve y = x3 + x


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×