English

If the Line Y = X Touches the Curve Y = X2 + Bx + C at a Point (1, 1) Then - Mathematics

Advertisements
Advertisements

Question

If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .

Options

  • b = 1, c = 2

  • b = −1, c = 1

  • b = 2, c = 1

  • b = −2, c = 1

MCQ

Solution

b = −1, c= 1

 

We can find the slope of the line by differentiating w.r.t. x.
Slope of the given line = 1

Now,

\[y = x^2 + bx + c . . . \left( 1 \right)\]

\[ \Rightarrow \frac{dy}{dx} = 2x + b\]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) =2+b\]

\[\text { Given}:\]

\[\text { Slope of the tangent } = 1\]

\[ \Rightarrow 2 + b = 1\]

\[ \Rightarrow b = - 1\]

\[\text { On substituting b= - 1, x=1 and y=1 in (1), we get}\]

\[ \Rightarrow 1 = 1 - 1 + c\]

\[ \Rightarrow c = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.5 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.5 | Q 16 | Page 43

RELATED QUESTIONS

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


At (0, 0) the curve y = x3 + x


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×