Advertisements
Advertisements
Question
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Solution
\[ y = x^3 . . . \left( 1 \right)\]
\[6y = 7 - x^2 . . . \left( 2 \right)\]
\[\text { From (1) and (2) we get }\]
\[6 x^3 = 7 - x^2 \]
\[ \Rightarrow 6 x^3 + x^2 - 7 = 0\]
\[x=1 \text { satisfies this }.\]
\[\text { Dividing this byx-1 ,we get }\]
\[6 x^2 + 7x + 7 = 0, \]
\[ {\text { Discriminant } = 7}^2 -4\left( 6 \right)\left( 7 \right)=-119<0\]
\[\text { So, this has no real roots }.\]
\[\text { When} x=1,y= x^3 =1 (\text { From }(1))\]
\[\text { So,} \left( x, y \right)=\left( 1, 1 \right)\]
\[\text { Differentiating (1) w.r.t.x, }\]
\[\frac{dy}{dx} = 3 x^2 \]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = 3\]
\[\text { Differenntiating (2) w.r.t.x, }\]
\[6\frac{dx}{dx} = - 2x\]
\[ \Rightarrow \frac{dx}{dx} = \frac{- 2x}{6} = \frac{- x}{3}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = \frac{- 1}{3}\]
\[\text { Now,} m_1 \times m_2 = 3 \times \frac{- 1}{3}\]
\[ \Rightarrow m_1 \times m_2 = - 1\]
\[\text { Since }, m_1 \times m_2 = - 1\]
So, the given curves intersect orthogonally.
APPEARS IN
RELATED QUESTIONS
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5) ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is