English

Show that the Following Set of Curve Intersect Orthogonally Y = X3 and 6y = 7 − X2 ? - Mathematics

Advertisements
Advertisements

Question

Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?

Solution

\[ y = x^3 . . . \left( 1 \right)\]

\[6y = 7 - x^2 . . . \left( 2 \right)\]

\[\text { From (1) and (2) we get }\]

\[6 x^3 = 7 - x^2 \]

\[ \Rightarrow 6 x^3 + x^2 - 7 = 0\]

\[x=1 \text { satisfies this }.\]

\[\text { Dividing this byx-1 ,we get }\]

\[6 x^2 + 7x + 7 = 0, \]

\[ {\text { Discriminant } = 7}^2 -4\left( 6 \right)\left( 7 \right)=-119<0\]

\[\text { So, this has no real roots }.\]

\[\text { When} x=1,y= x^3 =1 (\text { From }(1))\]

\[\text { So,} \left( x, y \right)=\left( 1, 1 \right)\]

\[\text { Differentiating (1) w.r.t.x, }\]

\[\frac{dy}{dx} = 3 x^2 \]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = 3\]

\[\text { Differenntiating (2) w.r.t.x, }\]

\[6\frac{dx}{dx} = - 2x\]

\[ \Rightarrow \frac{dx}{dx} = \frac{- 2x}{6} = \frac{- x}{3}\]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = \frac{- 1}{3}\]

\[\text { Now,} m_1 \times m_2 = 3 \times \frac{- 1}{3}\]

\[ \Rightarrow m_1 \times m_2 = - 1\]

\[\text { Since }, m_1 \times m_2 = - 1\]

So, the given curves intersect orthogonally.

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.3 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.3 | Q 2.1 | Page 40

RELATED QUESTIONS

The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is  parallel to the y-axis ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×