English

Find the Angle of Intersection of the Following Curve Y = 4 − X2 and Y = X2 ? - Mathematics

Advertisements
Advertisements

Question

Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?

Solution

\[\text { Given curves are},\]

\[y = 4 - x^2 . . . . . \left( 1 \right)\]

\[y = x^2 . . . . . \left( 2 \right)\]

\[\text { From ( 1)and (2), we get }\]

\[4 - x^2 = x^2 \]

\[ \Rightarrow 2 x^2 = 4\]

\[ \Rightarrow x^2 = 2\]

\[ \Rightarrow x = \pm \sqrt{2}\]

\[\text { Substituting the values of x in (2), we get }, \]

\[ \Rightarrow y = 2\]

\[ \Rightarrow \left( x, y \right)=\left( \sqrt{2},2 \right),\left( - \sqrt{2}, 2 \right)\]

\[\text{ Differentiating (1) w.r.t.x, }\]

\[\frac{dy}{dx} = - 2x . . . . . \left( 3 \right)\]

\[\text { Differentiating (2) w.r.t.x },\]

\[\frac{dy}{dx} = 2x . . . . . \left( 4 \right)\]

\[\text { Case } 1:\left( x, y \right)=\left( \sqrt{2}, 2 \right)\]

\[\text { From } \left( 3 \right), \text { we have,} m_1 = - 2\sqrt{2}\]

\[\text { From} \left( 4 \right) \text { we have }, m_2 = 2\sqrt{2}\]

\[\text { Now }, \]

\[\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{- 2\sqrt{2} - 2\sqrt{2}}{1 - 8} \right| = \frac{4\sqrt{2}}{7}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{4\sqrt{2}}{7} \right)\]

\[\text { Case } 1:\left( x, y \right)=\left( -\sqrt{2}, 2 \right)\]

\[\text { From } \left( 3 \right), \text { we have }, m_1 = 2\sqrt{2}\]

\[\text { From } \left( 4 \right) \text { we have }, m_2 = - 2\sqrt{2}\]

\[\text { Now,} \]

\[\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{2\sqrt{2} + 2\sqrt{2}}{1 - 8} \right| = \frac{4\sqrt{2}}{7}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{4\sqrt{2}}{7} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.3 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.3 | Q 1.9 | Page 40

RELATED QUESTIONS

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is  parallel to the y-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×