English

The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______. - Mathematics

Advertisements
Advertisements

Question

The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.

Options

  • Touch each other

  • Cut at right angle

  • Cut at an angle `pi/3`

  • Cut at an angle `pi/4`

MCQ
Fill in the Blanks

Solution

The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 cut at right angle.

Explanation:

From first equation of the curve

We have 3x2 – 3y2 – 6xy `"dy"/"dx"` = 0

⇒ `"dy"/"dx" = (x^2 - y^2)/(2xy)` = (m1) say and second equation of the curve gives

`6xy + 3x^2 "dy"/"dx" - 3y^2 "dy"/"dx"` = 0

⇒ `"dy"/"dx" = (-2y)/(x^2 - y^2)` = (m2) say

Since m1 . m2 = –1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Solved Examples [Page 132]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Solved Examples | Q 20 | Page 132

RELATED QUESTIONS

Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×