English

Find the Points on the Curve Y = X3 at Which the Slope of the Tangent is Equal to the Y-coordinate of the Point. - Mathematics

Advertisements
Advertisements

Question

Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.

Solution

The equation of the given curve is y = x3.

`:. dy/dx = 3x^2`

The slope of the tangent at the point (xy) is given by,

When the slope of the tangent is equal to the y-coordinate of the point, then y = 3x2.

Also, we have y = x3.

∴3x2 = x3

⇒ x2 (x − 3) = 0

⇒ x = 0, x = 3

When x = 0, then y = 0 and when x = 3, then y = 3(3)2 = 27.

Hence, the required points are (0, 0) and (3, 27).

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.3 [Page 212]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.3 | Q 17 | Page 212

RELATED QUESTIONS

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The curve y = `x^(1/5)` has at (0, 0) ______.


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×