Advertisements
Advertisements
Question
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Solution
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]
\[\text { Differentiating both sides w.r.t.x,} \]
\[\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{2y}{b^2}\frac{dy}{dx} = \frac{2x}{a^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x b^2}{y a^2}\]
\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( x_0 , y_0 \right) =\frac{x_0 b^2}{y_0 a^2}\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - y_0 = \frac{x_0 b^2}{y_0 a^2}\left( x - x_0 \right)\]
\[ \Rightarrow y y_0 a^2 - {y_0}^2 a^2 = x x_0 b^2 - {x_0}^2 b^2 \]
\[x x_0 b^2 - y y_0 a^2 = {x_0}^2 b^2 - {y_0}^2 a^2 . . . \left( 1 \right)\]
\[\text { Since }\left( x_0 , y_0 \right)\text { lies on the given curve},\]
\[ \Rightarrow \frac{{x_0}^2}{a^2} - \frac{{y_0}^2}{b^2} = 1\]
\[ \Rightarrow {x_0}^2 b^2 - {y_0}^2 a^2 = a^2 b^2 \]
\[\text { Substituting this in (1), we get }\]
\[ \Rightarrow x x_0 b^2 - y y_0 a^2 = a^2 b^2 \]
\[\text { Dividing this by} a^2 b^2 \]
\[\frac{x x_0}{a^2} - \frac{y y_0}{b^2} = 1\]
\[\text { Equation of normal is,}\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - y_0 = \frac{- y_0 a^2}{x_0 b^2}\left( x - x_0 \right)\]
\[ \Rightarrow y x_0 b^2 - x_0 y_0 b^2 = - x y_0 a^2 + x_0 y_0 a^2 \]
\[ \Rightarrow x y_0 a^2 + y x_0 b^2 = x_0 y_0 a^2 + x_0 y_0 b^2 \]
\[ \Rightarrow x y_0 a^2 + y x_0 b^2 = x_0 y_0 \left( a^2 + b^2 \right)\]
\[\text { Dividing by } x_0 y_0 \]
\[\frac{a^2 x}{x_0} + \frac{b^2 y}{y_0} = a^2 + b^2\]
APPEARS IN
RELATED QUESTIONS
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
At (0, 0) the curve y = x3 + x
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.