Advertisements
Advertisements
Question
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
Options
x = 2
x = π
x + π = 0
2x = π
Solution
2x = π
\[\text { Given }: \]
\[y = x + \sin x \cos x\]
\[\text { On differentiating both sides w.r.t.x, we get }\]
\[\frac{dy}{dx} = 1 + \cos^2 x - \sin^2 x\]
\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{2}} {=1+cos}^2 \frac{\pi}{2} {-sin}^2 \frac{\pi}{2}=1-1=0\]
\[\text { Slope of the normal, } m=\frac{- 1}{0}\]
\[\text { When }x=\frac{\pi}{2},\]
\[y=\frac{\pi}{2}+cos\frac{\pi}{2}\sin\frac{\pi}{2}=\frac{\pi}{2}\]
\[\text { Now }, \]
\[\left( x_1 , y_1 \right) = \left( \frac{\pi}{2}, \frac{\pi}{2} \right)\]
\[ \therefore \text { Equation of the normal }\]
\[ = y - y_1 = m\left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{\pi}{2} = \frac{- 1}{0}\left( x - \frac{\pi}{2} \right)\]
\[ \Rightarrow x = \frac{\pi}{2}\]
\[ \Rightarrow 2x = \pi\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5) ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the angle of intersection of the curves y2 = x and x2 = y.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
At (0, 0) the curve y = x3 + x
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
Which of the following represent the slope of normal?
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.