मराठी

The Equation of the Normal to the Curve Y = X + Sin X Cos X at X = π/2 is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .

पर्याय

  • = 2

  • x = π

  • x + π = 0

  • 2x = π

MCQ

उत्तर

2x = π

 

\[\text { Given }: \]

\[y = x + \sin x \cos x\]

\[\text { On differentiating both sides w.r.t.x, we get }\]

\[\frac{dy}{dx} = 1 + \cos^2 x - \sin^2 x\]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{2}} {=1+cos}^2 \frac{\pi}{2} {-sin}^2 \frac{\pi}{2}=1-1=0\]

\[\text { Slope of the normal, } m=\frac{- 1}{0}\]

\[\text { When }x=\frac{\pi}{2},\]

\[y=\frac{\pi}{2}+cos\frac{\pi}{2}\sin\frac{\pi}{2}=\frac{\pi}{2}\]

\[\text { Now }, \]

\[\left( x_1 , y_1 \right) = \left( \frac{\pi}{2}, \frac{\pi}{2} \right)\]

\[ \therefore \text { Equation of the normal }\]

\[ = y - y_1 = m\left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{\pi}{2} = \frac{- 1}{0}\left( x - \frac{\pi}{2} \right)\]

\[ \Rightarrow x = \frac{\pi}{2}\]

\[ \Rightarrow 2x = \pi\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.5 | Q 2 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The curves y = aex and y = be−x cut orthogonally, if ___________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The equation of normal to the curve y = tanx at (0, 0) is ______.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×