मराठी

The Slope of the Tangent to the Curve X = T2 + 3t − 8, Y = 2t2 − 2t − 5 at the Point (2, −1) is - Mathematics

Advertisements
Advertisements

प्रश्न

The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .

पर्याय

  • \[\frac{22}{7}\]

  • \[\frac{6}{7}\]

  • \[\frac{7}{6}\]

  • \[- \frac{6}{7}\]

MCQ

उत्तर

\[\frac{6}{7}\]

 

Given:
x = t2 + 3t − 8 and y = 2t2 − 2t − 5

\[\Rightarrow \frac{dx}{dt} = 2t + 3 \text { and } \frac{dy}{dt} = 4t - 2\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4t - 2}{2t + 3}\]

\[\text { The given point is } (2, -1).\]

\[\therefore x = 2 \text { and } y = -1\]

\[\text { Now }, \]

\[ t^2 + 3t - 8 = 2 \text { and }2 t^2 - 2t - 5 = - 1\]

\[ \Rightarrow t^2 + 3t - 10 = 0 \text { and } t^2 - t - 2 = 0\]

\[ \Rightarrow \left( t + 5 \right)\left( t - 2 \right) = 0 \text { and } \left( t + 1 \right)\left( t - 2 \right) = 0\]

\[ \Rightarrow t = - 5, 2 \text { and }t = - 1, 2\]

\[\text { We can see that t = 2 satisfies both of these }.\]

\[ \therefore \text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_{t = 2} =\frac{8 - 2}{4 + 3}=\frac{6}{7}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.5 | Q 26 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The curve y = `x^(1/5)` has at (0, 0) ______.


At (0, 0) the curve y = x3 + x


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×