मराठी

The curve y = x15 has at (0, 0) ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The curve y = `x^(1/5)` has at (0, 0) ______.

पर्याय

  • A vertical tangent (parallel to y-axis)

  • A horizontal tangent (parallel to x-axis)

  • An oblique tangent

  • No tangent

MCQ
रिकाम्या जागा भरा

उत्तर

The curve y = `x^(1/5)` has at (0, 0) a vertical tangent (parallel to y-axis).

Explanation:

Equation of curve is y = `x^(1/5)`

Differentiating w.r.t. x,

We get `"dy"/"dx" = 1/5 x^((-4)/5)`

At x = 0  `"dy"/"dx" = 1/5(0)^((-4)/5)`

= `1/5 xx 1/0 = oo`

`"dy"/"dx" = oo`

∴ The tangent is parallel to y-axis.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 37 | पृष्ठ १३८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×