Advertisements
Advertisements
प्रश्न
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
उत्तर
\[ x = a \cos^3 \theta\]
\[ \Rightarrow \frac{dx}{d\theta} = - 3a \cos^2 \theta \sin \theta\]
\[y = a \sin^3 \theta\]
\[ \Rightarrow \frac{dy}{d\theta} = 3a \sin^2 \theta \cos \theta\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3a \sin^2 \theta \cos \theta}{- 3a \cos^2 \theta \sin \theta} = - \tan \theta\]
\[\text { Now, } \]
\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_{\theta = \frac{\pi}{4}} =-tan\frac{\pi}{4}=-1\]
\[\text { Slope of the normal }=\frac{- 1}{\left( \frac{dy}{dx} \right)_{\theta = \frac{\pi}{4}}}=\frac{- 1}{- 1}=1\]
APPEARS IN
संबंधित प्रश्न
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.