मराठी

The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.

पर्याय

  • 3x – y = 8

  • 3x + y + 8 = 0

  • x + 3y ± 8 = 0

  • x + 3y = 0

MCQ
रिकाम्या जागा भरा

उत्तर

The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is x + 3y ± 8 = 0.

Explanation:

Given equation of the curve is 3x2 – y2 = 8   ......(i)

Differentiating both sides w.r.t. x, we get

`6x - 2y * "dy"/"dx"` = 0

⇒ `"dy"/"dx" = (3x)/y`

`(3x)/y` is the slope of the tangent

∴ Slope of the normal = `(-1)/("dy"/"dx") = (-y)/(3x)`

Now x + 3y = 8 is parallel to the normal

Differentiating both sides w.r.t. x, we have

`1 + 3 "dy"/"dx"` = 0

⇒ `"dy"/"dx" = - 1/3`

∴ `(-y)/(3x) = - 1/3`

⇒ y = x

Putting y = x in equation (i) we get

3x2 – x2 = 8

⇒ 2x2 = 8

⇒ x2 = 4

∴  x = ± 2 and y = ± 2

So the points are (2, 2) and (– 2, – 2).

Equation of normal to the given curve at (2, 2) is

y – 2 = `- 1/3(x - 2)`

⇒ 3y – 6 = – x + 2 

⇒ x + 3y – 8 = 0

Equation of normal at (– 2, – 2) is

y + 2 = `- 1/3 (x + 2)`

⇒ 3y + 6 = – x – 2

⇒ x + 3y + 8 = 0

∴ The equations of the normals to the curve are x + 3y ± 8 = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 38 | पृष्ठ १३९

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


The curve y = `x^(1/5)` has at (0, 0) ______.


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×