Advertisements
Advertisements
प्रश्न
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
पर्याय
x − y + 2 = 0 = x − y − 1
x + y − 1 = 0 = x − y − 2
x − y − 1 = 0 = x − y
x − y = 0 = x + y
उत्तर
`x + y − 1 = 0 = x − y − 2`
Let the tangent meet the x-axis at point (x, 0).
Now,
\[y = x^2 - 3x + 2\]
\[ \Rightarrow \frac{dy}{dx} = 2x - 3\]
\[\text { The tangent passes through point (x, 0) }.\]
\[ \therefore 0 = x^2 - 3x + 2\]
\[ \Rightarrow \left( x - 2 \right)\left( x - 1 \right) = 0\]
\[ \Rightarrow x = 2 \ or \ x = 1\]
\[\text { Case 1: When } x=2:\]
\[\text { Slope of the tangent },m= \left( \frac{dy}{dx} \right)_\left( 2, 0 \right) =4-3=1\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 2, 0 \right)\]
\[\text { Equation of the tangent }:\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - 0 = 1 \left( x - 2 \right)\]
\[ \Rightarrow x - y - 2 = 0\]
\[\text { Case 2: When } x=1:\]
\[\text { Slope of the tangent },m= \left( \frac{dy}{dx} \right)_\left( 2, 0 \right) =2-3=-1\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 1, 0 \right)\]
\[\text { Equation of the tangent }:\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - 0 = - 1 \left( x - 1 \right)\]
\[ \Rightarrow x + y - 1 = 0\]
APPEARS IN
संबंधित प्रश्न
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
Let `y = f(x)` be the equation of the curve, then equation of normal is
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3