मराठी

The Equations of Tangent at Those Points Where the Curve Y = X2 − 3x + 2 Meets X-axis Are - Mathematics

Advertisements
Advertisements

प्रश्न

The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .

पर्याय

  • x − y + 2 = 0 = x − y − 1

  • x + y − 1 = 0 = x − y − 2

  • x − y − 1 = 0 = x − y

  • x − y = 0 = x + y

MCQ

उत्तर

`x + y − 1 = 0 = x − y − 2`

 

Let the tangent meet the x-axis at point (x, 0).
Now,

\[y = x^2 - 3x + 2\]

\[ \Rightarrow \frac{dy}{dx} = 2x - 3\]

\[\text { The tangent passes through point (x, 0) }.\]

\[ \therefore 0 = x^2 - 3x + 2\]

\[ \Rightarrow \left( x - 2 \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow x = 2 \ or \ x = 1\]

\[\text { Case  1: When } x=2:\]

\[\text { Slope of the tangent },m= \left( \frac{dy}{dx} \right)_\left( 2, 0 \right) =4-3=1\]

\[ \therefore \left( x_1 , y_1 \right) = \left( 2, 0 \right)\]

\[\text { Equation of the tangent }:\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 0 = 1 \left( x - 2 \right)\]

\[ \Rightarrow x - y - 2 = 0\]

\[\text { Case 2: When } x=1:\]

\[\text { Slope of the tangent },m= \left( \frac{dy}{dx} \right)_\left( 2, 0 \right) =2-3=-1\]

\[ \therefore \left( x_1 , y_1 \right) = \left( 1, 0 \right)\]

\[\text { Equation of the tangent }:\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 0 = - 1 \left( x - 1 \right)\]

\[ \Rightarrow x + y - 1 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.5 | Q 11 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


Let `y = f(x)` be the equation of the curve, then equation of normal is


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×