मराठी

Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)

बेरीज

उत्तर

Given that the equation of the two curves are y2 = 4x  .....(i)

And x2 + y2 – 6x + 1 = 0   .....(ii)

Differentiating (i) w.r.t. x, we get `2y  "dy"/"dx"` = 4

⇒ `"dy"/"dx" = 2/y`

Slope of the tangent at (1, 2)

m1 = `2/2` = 1

Differentiating (ii) w.r.t. x

⇒ `2x + 2y * "dy"/"dx" - 6` = 0

⇒ `2y * "dy"/"dx"` = 6 – 2x

⇒ `"dy"/"dx" = (6 - 2x)/(2y)`

∴ Slope of the tangent at the same point (1, 2)

⇒ m2 = `(6 - 2 xx 1)/(2 xx 2)`

= `4/4`

= 1

We see that m1 = m2 = 1 at the point (1, 2).

Hence, the given circles touch each other at the same point (1, 2).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 16 | पृष्ठ १३६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×