Advertisements
Advertisements
प्रश्न
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
उत्तर
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
The curve y = `x^(1/5)` has at (0, 0) ______.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3