मराठी

Find the equation of the tangent and the normal to the following curve at the indicated points x = 3cosθ − cos3θ, y = 3sinθ − sin3θ ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 

बेरीज

उत्तर

`x=3costheta-cos^3theta,` `y=3sintheta-sin^3theta`

`rArr(dx)/(d theta)=-3sintheta +3cos^2thetasintheta `

And

`rArr(dy)/(d theta)=3costheta-3sin^2thetacostheta`

`rArr(dy)/(dx)=((dy)/(d theta))/((dx)/(d theta))=(3costheta-3sin^2thetacos theta)/(-3sintheta+3cos^2thetasintheta)=(costheta(1-sin^2theta))/(-sintheta(1-cos^2theta))=cos^3theta/-sin^3theta=-tan^3theta`

So equation of the tangent at θ is

`y-3sintheta+sin^3theta=-tan^3theta(x-3costheta+cos^3theta)`

`rArr4(ycos^3theta-xsin^3theta)=3sin4theta`

So equation of normal at θ is

`y-3sintheta+sin^3theta=1/tan^3theta(x-3costheta+cos^3theta)`

`rArrycos^3theta-xcos^3theta=3sin^4theta-sin^6theta-3cos^4theta+cos^6theta`

`rArr ysin^3theta-xcos^3theta=3sin^4theta-sin^6theta-3cos^4theta+cos^6theta`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.2 | Q 5.6 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


The equation of normal to the curve y = tanx at (0, 0) is ______.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×