Advertisements
Advertisements
प्रश्न
The equation of normal to the curve y = tanx at (0, 0) is ______.
उत्तर
The equation of normal to the curve y = tanx at (0, 0) is y + x = 0.
Explanation:
We have y = tan x.
So, `"dy"/"dx" = sec^2x`
∴ Slope of the normal = `(-1)/(sec^2x) = - cos^2x`
At the point (0, 0) the slope = `- cos^2(0)` = –1
So the equation of normal at (0, 0) is y – 0 = –1(x – 0)
⇒ y = – x
⇒ y + x = 0
Hence, the required equation is y + x = 0.
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
The curve y = `x^(1/5)` has at (0, 0) ______.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is