मराठी

The equation of normal to the curve y = tanx at (0, 0) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of normal to the curve y = tanx at (0, 0) is ______.

रिकाम्या जागा भरा

उत्तर

The equation of normal to the curve y = tanx at (0, 0) is y + x = 0.

Explanation:

We have y = tan x.

So, `"dy"/"dx" = sec^2x`

∴ Slope of the normal = `(-1)/(sec^2x) = - cos^2x`

At the point (0, 0) the slope = `- cos^2(0)` = –1

So the equation of normal at (0, 0) is y – 0 = –1(x – 0)

⇒ y = – x

⇒ y + x = 0

Hence, the required equation is y + x = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १४२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 61 | पृष्ठ १४२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


The curve y = `x^(1/5)` has at (0, 0) ______.


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×