Advertisements
Advertisements
प्रश्न
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
उत्तर
\[ y = 2 x^2 + 3 \sin x\]
\[ \Rightarrow \frac{dy}{dx} = 4x + 3 \cos x\]
When `x=0`
`y=2x^2+3sin x`
`=2(0)^2+3sin 0`
`=0`
\[\text { Now }, \]
\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( 0, 0 \right) =4\left( 0 \right)+ 3 \cos 0=3\]
\[\text { Slope of the normal }=\frac{- 1}{\left( \frac{dy}{dx} \right)_\left( 0, 0 \right)}=\frac{- 1}{3}\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3