English

Find the Slope of the Tangent and the Normal to the Following Curve at the Indicted Point Y = 2x2 + 3 Sin X at X = 0 - Mathematics

Advertisements
Advertisements

Question

Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?

Sum

Solution

\[ y = 2 x^2 + 3 \sin x\]

\[ \Rightarrow \frac{dy}{dx} = 4x + 3 \cos x\]

When `x=0`

`y=2x^2+3sin x`

`=2(0)^2+3sin 0`

`=0`

\[\text { Now }, \]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( 0, 0 \right)  =4\left( 0 \right)+ 3 \cos 0=3\]

\[\text { Slope of the normal }=\frac{- 1}{\left( \frac{dy}{dx} \right)_\left( 0, 0 \right)}=\frac{- 1}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.1 | Q 1.04 | Page 10

RELATED QUESTIONS

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


At (0, 0) the curve y = x3 + x


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×