Advertisements
Advertisements
Question
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Solution
Let (x1, y1) be the required point.
x coordinate of the point is x1.
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence,} y_1 = {x_1}^3 . . . \left( 1 \right)\]
\[\text { Now }, y = x^3 \]
\[ \Rightarrow \frac{dy}{dx} = 3 x^2 \]
\[\text { Slope of tangent at }\left( x, y \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =3 {x_1}^2 \]
\[\text { Given that }\]
\[\text { Slope of tangent at }\left( x_1 , y_1 \right)= x\text { co-ordinate of the point }\]
\[ \Rightarrow 3 {x_1}^2 = x_1 \]
\[ \Rightarrow x_1 \left( 3 x_1 - 1 \right) = 0\]
\[ \Rightarrow x_1 = 0 \text { or }x_1 = \frac{1}{3}\]
\[ \Rightarrow y_1 = 0^3 \text{or} \ y_1 = \left( \frac{1}{3} \right)^3 (\text { From }(1))\]
\[ \Rightarrow y_1 = 0 \text { or }y_1 = \frac{1}{27}\]
\[\text { So, the points are }\left( x_1 , y_1 \right)=\left( 0, 0 \right),\left( \frac{1}{3}, \frac{1}{27} \right)\]
APPEARS IN
RELATED QUESTIONS
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.