Advertisements
Advertisements
Question
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Solution
Given that y = cos(x + y)
⇒ `"dy"/"dx" = - sin(x + y) [1 + "dy"/"dx"]` ....(i)
or `"dy"/"dx" = - (sin(x + y))/(1 + sin(x + y))`
Since tangent is parallel to x + 2y = 0, therefore slope of tangent = `- 1/2`
Therefore, `- (sin(x + y))/(1 + sin(x + y)) = - 1/2`
⇒ sin(x + y) = 1 .....(ii)
Since cos(x + y) = y and sin(x + y) = 1
⇒ cos2(x + y) + sin2(x + y) = y2 + 1
⇒ 1 = y2 + 1 or y = 0.
Therefore, cosx = 0.
Therefore, x = `(2"n" + 1) pi/2`, n = 0, ± 1, ± 2...
Thus, x = `+- pi/2, +- (3pi)/2`, but x = `pi/2`, x = `(-3pi)/2` satisfy equation (ii)
Hence, the points are `(pi/2, 0), ((-3pi)/2, 0)`.
Therefore, equation of tangent at `(pi/2, 0)` is y = `- 1/2(x - pi/2)`
or 2x + 4y – π = 0, and equation of tangent at `((-3pi)/2, 0)` is y = `- 1/2(x + (3pi)/2)`
or 2x + 4y + 3π = 0.
APPEARS IN
RELATED QUESTIONS
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Which of the following represent the slope of normal?
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.