Advertisements
Advertisements
Question
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Solution
As per the given condition,
`("d"theta)/"dt" = 2 "d"/"dt" (sin theta)`
⇒ `("d"theta)/"dt" = 2 cos theta * ("d"theta)/"dt"`
⇒ 1 = 2 cos θ
∴ cos θ = `1/2`
⇒ cos θ = `cos pi/3`
⇒ θ = `pi/3`
Hence, the required angle is `pi/3`.
APPEARS IN
RELATED QUESTIONS
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
The equation of the normal to the curve y = sinx at (0, 0) is ______.
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3