English

Two men A and B start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being - Mathematics

Advertisements
Advertisements

Question

Two men A and B start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being seperated.

Sum

Solution


Let P be any point at which the two roads are inclined at an angle of 45°.

Two men A and B are moving along the roads PA and PB respectively with the same speed ‘V’

Let A and B be their final positions such that AB = y

∠APB = 45° and they move with the same speed.

∴ ΔAPB is an isosceles triangle.

Draw PQ ⊥ AB

AB = y

∴ AQ = `y/2` and PA = PB = x  ...(Let)

∠APQ = ∠BPQ

= `45/2`

= `22 1/2^circ`

[∵ In an isosceles Δ, the altitude drawn from the vertex, bisects the base]

Now in right ΔAPQ,

`sin 22 1/2^circ = "AQ"/"AP"`

⇒ `sin 22 1/2^circ = 2/x = y/(2x)`

⇒ y = `2x * sin 22 1/2^circ`

Differentiating both sides w.r.t, t, we get

`"dy"/"dt" = 2 * "dx"/"dt" * sin 22 1/2^circ`

= `2 * "V" * sqrt(2 - sqrt(2))/2`  ......`[because sin 22 1/2^circ = sqrt(2 - sqrt(2))/2]`

= `sqrt(2 - sqrt(2))` V m/s

Hence, the rate of their separation is `sqrt(2 - sqrt(2))` V unit/s.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Exercise [Page 135]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Exercise | Q 4 | Page 135

RELATED QUESTIONS

If y = f (u) is a differential function of u and u = g(x) is a differential function of x, then prove that y = f [g(x)] is a differential function of x and `dy/dx=dy/(du) xx (du)/dx`


Find the rate of change of the volume of a sphere with respect to its diameter ?


Find the rate of change of the volume of a cone with respect to the radius of its base ?


A particle moves along the curve y = x2 + 2x. At what point(s) on the curve are the x and y coordinates of the particle changing at the same rate?


If y = 7x − x3 and x increases at the rate of 4 units per second, how fast is the slope of the curve changing when x = 2?


A balloon in the form of a right circular cone surmounted by a hemisphere, having a diameter equal to the height of the cone, is being inflated. How fast is its volume changing with respect to its total height h, when h = 9 cm.


Water is running into an inverted cone at the rate of π cubic metres per minute. The height of the cone is 10 metres, and the radius of its base is 5 m. How fast the water level is rising when the water stands 7.5 m below the base.


Sand is being poured onto a conical pile at the constant rate of 50 cm3/ minute such that the height of the cone is always one half of the radius of its base. How fast is the height of the pile increasing when the sand is 5 cm deep ?


The volume of a cube is increasing at the rate of 9 cm3/sec. How fast is the surface area increasing when the length of an edge is 10 cm?


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of the area of the rectangle.


A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. Find the rate at which its area is increasing when radius is 3.2 cm.


The side of a square is increasing at the rate of 0.1 cm/sec. Find the rate of increase of its perimeter ?


The side of an equilateral triangle is increasing at the rate of \[\frac{1}{3}\] cm/sec. Find the rate of increase of its perimeter ?


The amount of pollution content added in air in a city due to x diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above questions ?


If \[V = \frac{4}{3}\pi r^3\] ,  at what rate in cubic units is V increasing when r = 10 and \[\frac{dr}{dt} = 0 . 01\] ?  _________________


The radius of a sphere is changing at the rate of 0.1 cm/sec. The rate of change of its surface area when the radius is 200 cm is


For what values of x is the rate of increase of x3 − 5x2 + 5x + 8 is twice the rate of increase of x ?


The distance moved by a particle travelling in straight line in t seconds is given by s = 45t + 11t2 − t3. The time taken by the particle to come to rest is


The volume of a sphere is increasing at the rate of 4π cm3/sec. The rate of increase of the radius when the volume is 288 π cm3, is


The diameter of a circle is increasing at the rate of 1 cm/sec. When its radius is π, the rate of increase of its area is


A 13 m long ladder is leaning against a wall, touching the wall at a certain height from the ground level. The bottom of the ladder is pulled away from the wall, along the ground, at the rate of 2 m/s. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall?


A ladder 13 m long is leaning against a vertical wall. The bottom of the ladder is dragged away from the wall along the ground at the rate of 2 cm/sec. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then how fast is the slope of curve changing when x = 3?


Water is dripping out from a conical funnel of semi-vertical angle `pi/4` at the uniform rate of 2cm2/sec in the surface area, through a tiny hole at the vertex of the bottom. When the slant height of cone is 4 cm, find the rate of decrease of the slant height of water.


If the area of a circle increases at a uniform rate, then prove that perimeter varies inversely as the radius


If the rate of change of the area of the circle is equal to the rate of change of its diameter then its radius is equal to ____________.


A cylindrical tank of radius 10 feet is being filled with wheat at the rate of 3/4 cubic feet per minute. The then depth of the wheat is increasing at the rate of


A particle moves along the curve 3y = ax3 + 1 such that at a point with x-coordinate 1, y-coordinate is changing twice as fast at x-coordinate. Find the value of a.


A kite is being pulled down by a string that goes through a ring on the ground 8 meters away from the person pulling it. If the string is pulled in at 1 meter per second, how fast is the kite coming down when it is 15 meters high?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×