English

For What Values of X is the Rate of Increase of X3 − 5x2 + 5x + 8 is Twice the Rate of Increase of X ? (A) − 3 , − 1 3 - Mathematics

Advertisements
Advertisements

Question

For what values of x is the rate of increase of x3 − 5x2 + 5x + 8 is twice the rate of increase of x ?

Options

  • \[- 3, - \frac{1}{3}\]

  • \[- 3, \frac{1}{3}\]

  • \[3, - \frac{1}{3}\]

     

  • \[3, \frac{1}{3}\]

MCQ

Solution

\[3, \frac{1}{3}\]

\[\text { Let  }y = x^3 - 5 x^2 + 5x + 8\]
\[ \Rightarrow \frac{dy}{dt} = \left( 3 x^2 - 10x + 5 \right)\frac{dx}{dt}\]
\[\text { According to the question },\]
\[ \Rightarrow 2\frac{dx}{dt} = \left( 3 x^2 - 10x + 5 \right)\frac{dx}{dt}\]
\[ \Rightarrow 3 x^2 - 10x + 5 = 2\]
\[ \Rightarrow 3 x^2 - 10x + 3 = 0\]
\[ \Rightarrow 3 x^2 - 9x - x + 3 = 0\]
\[ \Rightarrow 3x\left( x - 3 \right) - 1\left( x - 3 \right) = 0\]
\[ \Rightarrow \left( x - 3 \right) = 0 \ \text { or } \ \left( 3x - 1 \right) = 0\]
\[ \Rightarrow x = 3 \ \text {or} \ x = \frac{1}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Derivative as a Rate Measurer - Exercise 13.4 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 13 Derivative as a Rate Measurer
Exercise 13.4 | Q 8 | Page 25

RELATED QUESTIONS

The Volume of cube is increasing at the rate of 9 cm 3/s. How fast is its surfacee area increasing when the length of an edge is 10 cm?


Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?


The radius of an air bubble is increasing at the rate  `1/2`  cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?


Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?


The total revenue in rupees received from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5. The marginal revenue, when x = 15 is ______.


The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base?


The volume of a sphere is increasing at the rate of 8 cm3/s. Find the rate at which its surface area is increasing when the radius of the sphere is 12 cm.


The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm


The total cost C(x) associated with the production of x units of an item is given by C(x) = 0.005x3 – 0.02x2 + 30x + 5000. Find the marginal cost when 3 units are produced, whereby marginal cost we mean the instantaneous rate of change of total cost at any level of output.


Find the rate of change of the area of a circular disc with respect to its circumference when the radius is 3 cm ?


The total revenue received from the sale of x units of a product is given by R (x) = 13x2 + 26x + 15. Find the marginal revenue when x = 7 ?


The money to be spent for the welfare of the employees of a firm is proportional to the rate of change of its total revenue (Marginal revenue). If the total revenue (in rupees) recieved from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5, find the marginal revenue, when x = 5, and write which value does the question indicate ?


The radius of a circle is increasing at the rate of 0.7 cm/sec. What is the rate of increase of its circumference?


A man 180 cm tall walks at a rate of 2 m/sec. away, from a source of light that is 9 m above the ground. How fast is the length of his shadow increasing when he is 3 m away from the base of light?


A ladder 13 m long leans against a wall. The foot of the ladder is pulled along the ground away from the wall, at the rate of 1.5 m/sec. How fast is the angle θ between the ladder and the ground is changing when the foot of the ladder is 12 m away from the wall.


A particle moves along the curve y = x3. Find the points on the curve at which the y-coordinate changes three times more rapidly than the x-coordinate.


Find an angle θ whose rate of increase twice is twice the rate of decrease of its cosine ?


The top of a ladder 6 metres long is resting against a vertical wall on a level pavement, when the ladder begins to slide outwards. At the moment when the foot of the ladder is 4 metres from the wall, it is sliding away from the wall at the rate of 0.5 m/sec. How fast is the top-sliding downwards at this instance?
How far is the foot from the wall when it and the top are moving at the same rate?


Find the point on the curve y2 = 8x for which the abscissa and ordinate change at the same rate ?


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of the area of the rectangle.


The radius of a circle is increasing at the rate of 0.5 cm/sec. Find the rate of increase of its circumference ?


The coordinates of the point on the ellipse 16x2 + 9y2 = 400 where the ordinate decreases at the same rate at which the abscissa increases, are


The distance moved by a particle travelling in straight line in t seconds is given by s = 45t + 11t2 − t3. The time taken by the particle to come to rest is


If s = t3 − 4t2 + 5 describes the motion of a particle, then its velocity when the acceleration vanishes, is


A man 2 metres tall walks away from a lamp post 5 metres height at the rate of 4.8 km/hr. The rate of increase of the length of his shadow is


If the area of a circle increases at a uniform rate, then prove that perimeter varies inversely as the radius


A man, 2m tall, walks at the rate of `1 2/3` m/s towards a street light which is `5 1/3`m above the ground. At what rate is the tip of his shadow moving? At what rate is the length of the shadow changing when he is `3 1/3`m from the base of the light?


The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side


A ladder, 5 meter long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides downwards at the rate of 10 cm/sec, then the rate at which the angle between the floor and the ladder is decreasing when lower end of ladder is 2 metres from the wall is ______.


A cylindrical tank of radius 10 feet is being filled with wheat at the rate of 3/4 cubic feet per minute. The then depth of the wheat is increasing at the rate of


A man 1.6 m tall walks at the rate of 0.3 m/sec away from a street light that is 4 m above the ground. At what rate is the tip of his shadow moving? At what rate is his shadow lengthening?


A spherical balloon is being inflated at the rate of 35 cc/min. The rate of increase in the surface area (in cm2/min.) of the balloon when its diameter is 14 cm, is ______.


A particle moves along the curve 3y = ax3 + 1 such that at a point with x-coordinate 1, y-coordinate is changing twice as fast at x-coordinate. Find the value of a.


If the circumference of circle is increasing at the constant rate, prove that rate of change of area of circle is directly proportional to its radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×