मराठी

For What Values of X is the Rate of Increase of X3 − 5x2 + 5x + 8 is Twice the Rate of Increase of X ? (A) − 3 , − 1 3 - Mathematics

Advertisements
Advertisements

प्रश्न

For what values of x is the rate of increase of x3 − 5x2 + 5x + 8 is twice the rate of increase of x ?

पर्याय

  • \[- 3, - \frac{1}{3}\]

  • \[- 3, \frac{1}{3}\]

  • \[3, - \frac{1}{3}\]

     

  • \[3, \frac{1}{3}\]

MCQ

उत्तर

\[3, \frac{1}{3}\]

\[\text { Let  }y = x^3 - 5 x^2 + 5x + 8\]
\[ \Rightarrow \frac{dy}{dt} = \left( 3 x^2 - 10x + 5 \right)\frac{dx}{dt}\]
\[\text { According to the question },\]
\[ \Rightarrow 2\frac{dx}{dt} = \left( 3 x^2 - 10x + 5 \right)\frac{dx}{dt}\]
\[ \Rightarrow 3 x^2 - 10x + 5 = 2\]
\[ \Rightarrow 3 x^2 - 10x + 3 = 0\]
\[ \Rightarrow 3 x^2 - 9x - x + 3 = 0\]
\[ \Rightarrow 3x\left( x - 3 \right) - 1\left( x - 3 \right) = 0\]
\[ \Rightarrow \left( x - 3 \right) = 0 \ \text { or } \ \left( 3x - 1 \right) = 0\]
\[ \Rightarrow x = 3 \ \text {or} \ x = \frac{1}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Derivative as a Rate Measurer - Exercise 13.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 13 Derivative as a Rate Measurer
Exercise 13.4 | Q 8 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

A point source of light is hung 30 feet directly above a straight horizontal path on which a man of 6 feet in height is walking. How fast will the man’s shadow lengthen and how fast will the tip of shadow move when he is walking away from the light at the rate of 100 ft/min.


Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.


The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm


The total cost C(x) associated with the production of x units of an item is given by C(x) = 0.005x3 – 0.02x2 + 30x + 5000. Find the marginal cost when 3 units are produced, whereby marginal cost we mean the instantaneous rate of change of total cost at any level of output.


Find the rate of change of the volume of a ball with respect to its radius r. How fast is the volume changing with respect to the radius when the radius is 2 cm?


The money to be spent for the welfare of the employees of a firm is proportional to the rate of change of its total revenue (Marginal revenue). If the total revenue (in rupees) recieved from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5, find the marginal revenue, when x = 5, and write which value does the question indicate ?


The side of a square sheet is increasing at the rate of 4 cm per minute. At what rate is the area increasing when the side is 8 cm long?


An edge of a variable cube is increasing at the rate of 3 cm per second. How fast is the volume of the cube increasing when the edge is 10 cm long?


A man 160 cm tall, walks away from a source of light situated at the top of a pole 6 m high, at the rate of 1.1 m/sec. How fast is the length of his shadow increasing when he is 1 m away from the pole?


A balloon in the form of a right circular cone surmounted by a hemisphere, having a diameter equal to the height of the cone, is being inflated. How fast is its volume changing with respect to its total height h, when h = 9 cm.


The radius of a cylinder is increasing at the rate 2 cm/sec. and its altitude is decreasing at the rate of 3 cm/sec. Find the rate of change of volume when radius is 3 cm and altitude 5 cm.


The volume of metal in a hollow sphere is constant. If the inner radius is increasing at the rate of 1 cm/sec, find the rate of increase of the outer radius when the radii are 4 cm and 8 cm respectively.


Sand is being poured onto a conical pile at the constant rate of 50 cm3/ minute such that the height of the cone is always one half of the radius of its base. How fast is the height of the pile increasing when the sand is 5 cm deep ?


A kite is 120 m high and 130 m of string is out. If the kite is moving away horizontally at the rate of 52 m/sec, find the rate at which the string is being paid out.


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of the area of the rectangle.


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. How far is the area increasing when the side is 10 cms?


The side of a square is increasing at the rate of 0.1 cm/sec. Find the rate of increase of its perimeter ?


A ladder, 5 metre long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides down wards at the rate of 10 cm/sec, then find the rate at which the angle between the floor and ladder is decreasing when lower end of ladder is 2 metres from the wall ?


Side of an equilateral triangle expands at the rate of 2 cm/sec. The rate of increase of its area when each side is 10 cm is


The altitude of a cone is 20 cm and its semi-vertical angle is 30°. If the semi-vertical angle is increasing at the rate of 2° per second, then the radius of the base is increasing at the rate of


The distance moved by a particle travelling in straight line in t seconds is given by s = 45t + 11t2 − t3. The time taken by the particle to come to rest is


If s = t3 − 4t2 + 5 describes the motion of a particle, then its velocity when the acceleration vanishes, is


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of


Find the rate of change of the area of a circle with respect to its radius r when r = 4 cm.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then how fast is the slope of curve changing when x = 3?


Water is dripping out at a steady rate of 1 cu cm/sec through a tiny hole at the vertex of the conical vessel, whose axis is vertical. When the slant height of water in the vessel is 4 cm, find the rate of decrease of slant height, where the vertical angle of the conical vessel is `pi/6`


A spherical ball of salt is dissolving in water in such a manner that the rate of decrease of the volume at any instant is proportional to the surface. Prove that the radius is decreasing at a constant rate


If the area of a circle increases at a uniform rate, then prove that perimeter varies inversely as the radius


A swimming pool is to be drained for cleaning. If L represents the number of litres of water in the pool t seconds after the pool has been plugged off to drain and L = 200 (10 – t)2. How fast is the water running out at the end of 5 seconds? What is the average rate at which the water flows out during the first 5 seconds?


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is ______.


Total revenue in rupees received from the sale of x units of a product is given by R(x)= 3x2+ 36x + 5. The marginal revenue, when x = 15 is ____________.


If the rate of change of the area of the circle is equal to the rate of change of its diameter then its radius is equal to ____________.


The rate of change of volume of a sphere is equal to the rate of change of the radius than its radius equal to ____________.


The radius of a circle is increasing uniformly at the rate of 3 cm per second. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A man 1.6 m tall walks at the rate of 0.3 m/sec away from a street light that is 4 m above the ground. At what rate is the tip of his shadow moving? At what rate is his shadow lengthening?


A spherical balloon is filled with 4500π cubic meters of helium gas. If a leak in the balloon causes the gas to escape at the rate of 72π cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 49 minutes after the leakage began is ______.


If the circumference of circle is increasing at the constant rate, prove that rate of change of area of circle is directly proportional to its radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×