English

The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side - Mathematics

Advertisements
Advertisements

Question

The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side

Sum

Solution

Let x be the length of the cube

∴ Volume of the cube V = x3   ......(1)

Given that dVdt = K

Differentiating Equation (1) w.r.t. t, we get

dVdt=3x2dxdt = K  .....(constant)

dxdt=K3x2

Now surface area of the cube, S = 6x2

Differentiating both sides w.r.t. t, we get

dsdt=62xdxdt

= 12xK3x2

dsdt=4Kx

dsdt1x   .....(4K = constant)

Hence, the surface area of the cube varies inversely as the length of the side.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Exercise [Page 136]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Exercise | Q 10 | Page 136

RELATED QUESTIONS

A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.


A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.


A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.


Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?


The total revenue in rupees received from the sale of x units of a product is given by R(x) = 13x2 + 26x + 15. Find the marginal revenue when x = 7.


The rate of change of the area of a circle with respect to its radius r at r = 6 cm is ______.


Find the rate of change of the volume of a ball with respect to its radius r. How fast is the volume changing with respect to the radius when the radius is 2 cm?


The total cost C (x) associated with the production of x units of an item is given by C (x) = 0.007x3 − 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced ?


A stone is dropped into a quiet lake and waves move in circles at a speed of 4 cm/sec. At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area increasing?


If y = 7x − x3 and x increases at the rate of 4 units per second, how fast is the slope of the curve changing when x = 2?


A particle moves along the curve y = x3. Find the points on the curve at which the y-coordinate changes three times more rapidly than the x-coordinate.


Water is running into an inverted cone at the rate of π cubic metres per minute. The height of the cone is 10 metres, and the radius of its base is 5 m. How fast the water level is rising when the water stands 7.5 m below the base.


The volume of metal in a hollow sphere is constant. If the inner radius is increasing at the rate of 1 cm/sec, find the rate of increase of the outer radius when the radii are 4 cm and 8 cm respectively.


Find the point on the curve y2 = 8x for which the abscissa and ordinate change at the same rate ?


If the rate of change of volume of a sphere is equal to the rate of change of its radius, find the radius of the sphere ?


Side of an equilateral triangle expands at the rate of 2 cm/sec. The rate of increase of its area when each side is 10 cm is


A cone whose height is always equal to its diameter is increasing in volume at the rate of 40 cm3/sec. At what rate is the radius increasing when its circular base area is 1 m2?


For what values of x is the rate of increase of x3 − 5x2 + 5x + 8 is twice the rate of increase of x ?


Each side of an equilateral triangle is increasing at the rate of 8 cm/hr. The rate of increase of its area when side is 2 cm, is


The equation of motion of a particle is s = 2t2 + sin 2t, where s is in metres and is in seconds. The velocity of the particle when its acceleration is 2 m/sec2, is


A man of height 6 ft walks at a uniform speed of 9 ft/sec from a lamp fixed at 15 ft height. The length of his shadow is increasing at the rate of


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then how fast is the slope of curve changing when x = 3?


A swimming pool is to be drained for cleaning. If L represents the number of litres of water in the pool t seconds after the pool has been plugged off to drain and L = 200 (10 – t)2. How fast is the water running out at the end of 5 seconds? What is the average rate at which the water flows out during the first 5 seconds?


x and y are the sides of two squares such that y = x – x2. Find the rate of change of the area of second square with respect to the area of first square.


The rate of change of volume of a sphere is equal to the rate of change of the radius than its radius equal to ____________.


A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.