English

The Equation of Motion of a Particle is S = 2t2 + Sin 2t, Where S is in Metres and T is in Seconds. the Velocity of the Particle When Its Acceleration is 2 M/Sec2, is (A) π + √ 3 M / Sec - Mathematics

Advertisements
Advertisements

Question

The equation of motion of a particle is s = 2t2 + sin 2t, where s is in metres and is in seconds. The velocity of the particle when its acceleration is 2 m/sec2, is

Options

  • \[\pi + \sqrt{3} m\ /\sec\]

  • \[\frac{\pi}{3} + \sqrt{3} m/\sec\]

  • \[\frac{2\pi}{3} + \sqrt{3} m/\sec\]

  • \[\frac{\pi}{3} + \frac{1}{\sqrt{3}} m/\sec\]

MCQ

Solution

 \[\frac{\pi}{3} + \sqrt{3} \ m/\sec\]

\[\text { According to the question },\] 
\[s = 2 t^2  + \sin  2t\] 
\[ \Rightarrow \frac{ds}{dt} = 4t + 2  \cos  2t\] 
\[ \Rightarrow \frac{d^2 s}{d t^2} = 4 - 4  \sin  2t\] 
\[ \Rightarrow 4 - 4  \sin  2t = 2\] 
\[ \Rightarrow 4  \sin  2t = 2\] 
\[ \Rightarrow \sin  2t = \frac{1}{2}\] 
\[ \Rightarrow 2t = \frac{\pi}{6}\] 
\[\text { Now,} \] 
\[\frac{ds}{dt} = 4\left( \frac{\pi}{12} \right) + 2  \cos\left( \frac{\pi}{6} \right)\] 
 
\[ \Rightarrow \frac{ds}{dt} = \frac{\pi}{3} + \sqrt{3}  m/\sec\] 
shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Derivative as a Rate Measurer - Exercise 13.4 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 13 Derivative as a Rate Measurer
Exercise 13.4 | Q 19 | Page 25

RELATED QUESTIONS

Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


The volume of a cube is increasing at the rate of 8 cm3/s. How fast is the surface area increasing when the length of an edge is 12 cm?


The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?


A balloon, which always remains spherical, has a variable diameter  `3/2 (2x +   1)` Find the rate of change of its volume with respect to x.


Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?


The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base?


The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm


Find the rate of change of the volume of a cone with respect to the radius of its base ?


The side of a square sheet is increasing at the rate of 4 cm per minute. At what rate is the area increasing when the side is 8 cm long?


A balloon which always remains spherical, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon is increasing when the radius is 15 cm.


Find an angle θ which increases twice as fast as its cosine ?


The surface area of a spherical bubble is increasing at the rate of 2 cm2/s. When the radius of the bubble is 6 cm, at what rate is the volume of the bubble increasing?


The radius of a cylinder is increasing at the rate 2 cm/sec. and its altitude is decreasing at the rate of 3 cm/sec. Find the rate of change of volume when radius is 3 cm and altitude 5 cm.


A particle moves along the curve y = (2/3)x3 + 1. Find the points on the curve at which the y-coordinate is changing twice as fast as the x-coordinate ?


The volume of a spherical balloon is increasing at the rate of 25 cm3/sec. Find the rate of change of its surface area at the instant when radius is 5 cm ?


A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. Find the rate at which its area is increasing when radius is 3.2 cm.


The side of an equilateral triangle is increasing at the rate of \[\frac{1}{3}\] cm/sec. Find the rate of increase of its perimeter ?


The radius of a sphere is changing at the rate of 0.1 cm/sec. The rate of change of its surface area when the radius is 200 cm is


A cylindrical vessel of radius 0.5 m is filled with oil at the rate of 0.25 π m3/minute. The rate at which the surface of the oil is rising, is


The distance moved by the particle in time t is given by x = t3 − 12t2 + 6t + 8. At the instant when its acceleration is zero, the velocity is


The distance moved by a particle travelling in straight line in t seconds is given by s = 45t + 11t2 − t3. The time taken by the particle to come to rest is


If s = t3 − 4t2 + 5 describes the motion of a particle, then its velocity when the acceleration vanishes, is


A man 2 metres tall walks away from a lamp post 5 metres height at the rate of 4.8 km/hr. The rate of increase of the length of his shadow is


In a sphere the rate of change of surface area is


Evaluate:  `int (x(1+x^2))/(1+x^4)dx`


A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of boy is 1.5 m.


The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side


x and y are the sides of two squares such that y = x – x2. Find the rate of change of the area of second square with respect to the area of first square.


The instantaneous rate of change at t = 1 for the function f (t) = te-t + 9 is ____________.


If the rate of change of volume of a sphere is equal to the rate of change of its radius then the surface area of a sphere is ____________.


What is the rate of change of the area of a circle with respect to its radius when, r = 3 cm


If equal sides of an isosceles triangle with fixed base 10 cm are increasing at the rate of 4 cm/sec, how fast is the area of triangle increasing at an instant when all sides become equal?


The median of an equilateral triangle is increasing at the ratio of `2sqrt(3)` cm/s. Find the rate at which its side is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×