English

A Balloon Which Always Remains Spherical, is Being Inflated by Pumping in 900 Cubic Centimetres of Gas per Second - Mathematics

Advertisements
Advertisements

Question

A balloon which always remains spherical, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon is increasing when the radius is 15 cm.

Sum

Solution

\[\text { Let r be the radius and V be the volume of the spherical balloon at any time t. Then },\]
\[V=\frac{4}{3}\pi r^3 \]
\[\Rightarrow\frac{dV}{dt} {=4\pi r}^2 \frac{dr}{dt}\]
\[\Rightarrow\frac{dr}{dt}=\left( \frac{1}{4\pi r^2} \right)\frac{dV}{dt}\]
\[\Rightarrow\frac{dr}{dt}=\frac{900}{4\pi \left( 15 \right)^2}\left[ \because r = 15 \text { cm and } \frac{dV}{dt} = 900 {cm}^3 /\sec \right]\]
\[\Rightarrow\frac{dr}{dt}=\frac{900}{900\pi}\]
\[\Rightarrow\frac{dr}{dt}=\frac{1}{\pi}cm/sec\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Derivative as a Rate Measurer - Exercise 13.2 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 13 Derivative as a Rate Measurer
Exercise 13.2 | Q 6 | Page 19

RELATED QUESTIONS

If y = f (u) is a differential function of u and u = g(x) is a differential function of x, then prove that y = f [g(x)] is a differential function of x and `dy/dx=dy/(du) xx (du)/dx`


A point source of light is hung 30 feet directly above a straight horizontal path on which a man of 6 feet in height is walking. How fast will the man’s shadow lengthen and how fast will the tip of shadow move when he is walking away from the light at the rate of 100 ft/min.


Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


The volume of a cube is increasing at the rate of 8 cm3/s. How fast is the surface area increasing when the length of an edge is 12 cm?


The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?


A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.


Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?


The total revenue in rupees received from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5. The marginal revenue, when x = 15 is ______.


Find the rate of change of the volume of a sphere with respect to its diameter ?


Find the rate of change of the area of a circular disc with respect to its circumference when the radius is 3 cm ?


The money to be spent for the welfare of the employees of a firm is proportional to the rate of change of its total revenue (Marginal revenue). If the total revenue (in rupees) recieved from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5, find the marginal revenue, when x = 5, and write which value does the question indicate ?


The radius of a circle is increasing at the rate of 0.7 cm/sec. What is the rate of increase of its circumference?


The radius of a spherical soap bubble is increasing at the rate of 0.2 cm/sec. Find the rate of increase of its surface area, when the radius is 7 cm.


A man 2 metres high walks at a uniform speed of 5 km/hr away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases.


A stone is dropped into a quiet lake and waves move in circles at a speed of 4 cm/sec. At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area increasing?


A particle moves along the curve y = x3. Find the points on the curve at which the y-coordinate changes three times more rapidly than the x-coordinate.


The surface area of a spherical bubble is increasing at the rate of 2 cm2/s. When the radius of the bubble is 6 cm, at what rate is the volume of the bubble increasing?


Sand is being poured onto a conical pile at the constant rate of 50 cm3/ minute such that the height of the cone is always one half of the radius of its base. How fast is the height of the pile increasing when the sand is 5 cm deep ?


A kite is 120 m high and 130 m of string is out. If the kite is moving away horizontally at the rate of 52 m/sec, find the rate at which the string is being paid out.


The volume of a spherical balloon is increasing at the rate of 25 cm3/sec. Find the rate of change of its surface area at the instant when radius is 5 cm ?


A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. Find the rate at which its area is increasing when radius is 3.2 cm.


The side of a square is increasing at the rate of 0.1 cm/sec. Find the rate of increase of its perimeter ?


Find the surface area of a sphere when its volume is changing at the same rate as its radius ?


The amount of pollution content added in air in a city due to x diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above questions ?


A cylindrical vessel of radius 0.5 m is filled with oil at the rate of 0.25 π m3/minute. The rate at which the surface of the oil is rising, is


For what values of x is the rate of increase of x3 − 5x2 + 5x + 8 is twice the rate of increase of x ?


The coordinates of the point on the ellipse 16x2 + 9y2 = 400 where the ordinate decreases at the same rate at which the abscissa increases, are


In a sphere the rate of change of volume is


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then how fast is the slope of curve changing when x = 3?


Water is dripping out from a conical funnel of semi-vertical angle `pi/4` at the uniform rate of 2cm2/sec in the surface area, through a tiny hole at the vertex of the bottom. When the slant height of cone is 4 cm, find the rate of decrease of the slant height of water.


A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of boy is 1.5 m.


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is ______.


The instantaneous rate of change at t = 1 for the function f (t) = te-t + 9 is ____________.


The rate of change of area of a circle with respect to its radius r at r = 6 cm is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×