English

Sand is Being Poured onto a Conical Pile at the Constant Rate of 50 Cm3/ Minute Such that the Height of the Cone is Always One Half of the Radius of Its Base. - Mathematics

Advertisements
Advertisements

Question

Sand is being poured onto a conical pile at the constant rate of 50 cm3/ minute such that the height of the cone is always one half of the radius of its base. How fast is the height of the pile increasing when the sand is 5 cm deep ?

Sum

Solution

\[\text { Let r be the radius,h be the height and V be the volume of the conical pile at any time t. Then },\]

\[V=\frac{1}{3}\pi r^2 h\]

\[ \Rightarrow V=\frac{1}{3}\pi \left( 2h \right)^2 h \left[ \because h = \frac{r}{2} \right]\]

\[ \Rightarrow V=\frac{4}{3} \pi h^3 \]

\[ \Rightarrow \frac{dV}{dt} = 4\pi h^2 \frac{dh}{dt}\]

\[ \Rightarrow 50 = 4\pi h^2 \frac{dh}{dt}\]

\[ \Rightarrow \frac{dh}{dt} = \frac{50}{4\pi \left( 5 \right)^2}\]

\[ \Rightarrow \frac{dh}{dt} = \frac{1}{2\pi} cm/\min\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Derivative as a Rate Measurer - Exercise 13.2 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 13 Derivative as a Rate Measurer
Exercise 13.2 | Q 24 | Page 20

RELATED QUESTIONS

The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?


The radius of an air bubble is increasing at the rate  `1/2`  cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?


Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?


The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) = 0.007x3 – 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced


The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base?


The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.


Find the rate of change of the volume of a sphere with respect to its diameter ?


Find the rate of change of the area of a circle with respect to its radius r when r = 5 cm 


The total revenue received from the sale of x units of a product is given by R (x) = 13x2 + 26x + 15. Find the marginal revenue when x = 7 ?


An edge of a variable cube is increasing at the rate of 3 cm per second. How fast is the volume of the cube increasing when the edge is 10 cm long?


A stone is dropped into a quiet lake and waves move in circles at a speed of 4 cm/sec. At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area increasing?


Find an angle θ whose rate of increase twice is twice the rate of decrease of its cosine ?


The top of a ladder 6 metres long is resting against a vertical wall on a level pavement, when the ladder begins to slide outwards. At the moment when the foot of the ladder is 4 metres from the wall, it is sliding away from the wall at the rate of 0.5 m/sec. How fast is the top-sliding downwards at this instance?
How far is the foot from the wall when it and the top are moving at the same rate?


Water is running into an inverted cone at the rate of π cubic metres per minute. The height of the cone is 10 metres, and the radius of its base is 5 m. How fast the water level is rising when the water stands 7.5 m below the base.


A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. Find the rate at which its area is increasing when radius is 3.2 cm.


The side of an equilateral triangle is increasing at the rate of \[\frac{1}{3}\] cm/sec. Find the rate of increase of its perimeter ?


A ladder, 5 metre long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides down wards at the rate of 10 cm/sec, then find the rate at which the angle between the floor and ladder is decreasing when lower end of ladder is 2 metres from the wall ?


The distance moved by the particle in time t is given by x = t3 − 12t2 + 6t + 8. At the instant when its acceleration is zero, the velocity is


The radius of the base of a cone is increasing at the rate of 3 cm/minute and the altitude is decreasing at the rate of 4 cm/minute. The rate of change of lateral surface when the radius = 7 cm and altitude 24 cm is


The radius of a sphere is increasing at the rate of 0.2 cm/sec. The rate at which the volume of the sphere increase when radius is 15 cm, is


The diameter of a circle is increasing at the rate of 1 cm/sec. When its radius is π, the rate of increase of its area is


Find the rate of change of the area of a circle with respect to its radius r when r = 4 cm.


Water is dripping out at a steady rate of 1 cu cm/sec through a tiny hole at the vertex of the conical vessel, whose axis is vertical. When the slant height of water in the vessel is 4 cm, find the rate of decrease of slant height, where the vertical angle of the conical vessel is `pi/6`


A spherical ball of salt is dissolving in water in such a manner that the rate of decrease of the volume at any instant is proportional to the surface. Prove that the radius is decreasing at a constant rate


Two men A and B start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being seperated.


x and y are the sides of two squares such that y = x – x2. Find the rate of change of the area of second square with respect to the area of first square.


The instantaneous rate of change at t = 1 for the function f (t) = te-t + 9 is ____________.


The rate of change of area of a circle with respect to its radius r at r = 6 cm is ____________.


If the rate of change of the area of the circle is equal to the rate of change of its diameter then its radius is equal to ____________.


If the rate of change of volume of a sphere is equal to the rate of change of its radius then the surface area of a sphere is ____________.


A spherical balloon is being inflated at the rate of 35 cc/min. The rate of increase in the surface area (in cm2/min.) of the balloon when its diameter is 14 cm, is ______.


If equal sides of an isosceles triangle with fixed base 10 cm are increasing at the rate of 4 cm/sec, how fast is the area of triangle increasing at an instant when all sides become equal?


The median of an equilateral triangle is increasing at the ratio of `2sqrt(3)` cm/s. Find the rate at which its side is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×