English

The Side of an Equilateral Triangle is Increasing at the Rate of 1 3 Cm/Sec. Find the Rate of Increase of Its Perimeter ? - Mathematics

Advertisements
Advertisements

Question

The side of an equilateral triangle is increasing at the rate of \[\frac{1}{3}\] cm/sec. Find the rate of increase of its perimeter ?

Sum

Solution

\[\text { Let x be the side and P be the perimeter of the equilateral triangle at any time t.Then },\]

\[P = 3x\]

\[ \Rightarrow \frac{dP}{dt} = 3\frac{dx}{dt}\]

\[ \Rightarrow \frac{dP}{dt} = 3 \times \frac{1}{3} \left[ \because \frac{dx}{dt} = \frac{1}{3}cm/\sec \right]\]

\[ \Rightarrow \frac{dP}{dt} = 1 cm/\sec\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Derivative as a Rate Measurer - Exercise 13.3 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 13 Derivative as a Rate Measurer
Exercise 13.3 | Q 6 | Page 24

RELATED QUESTIONS

The Volume of cube is increasing at the rate of 9 cm 3/s. How fast is its surfacee area increasing when the length of an edge is 10 cm?


Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?


The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) = 0.007x3 – 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced


The rate of change of the area of a circle with respect to its radius r at r = 6 cm is ______.


The total revenue in rupees received from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5. The marginal revenue, when x = 15 is ______.


The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.


Find the rate of change of the area of a circle with respect to its radius r when r = 5 cm 


The total revenue received from the sale of x units of a product is given by R (x) = 13x2 + 26x + 15. Find the marginal revenue when x = 7 ?


The money to be spent for the welfare of the employees of a firm is proportional to the rate of change of its total revenue (Marginal revenue). If the total revenue (in rupees) recieved from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5, find the marginal revenue, when x = 5, and write which value does the question indicate ?


The side of a square is increasing at the rate of 0.2 cm/sec. Find the rate of increase of the perimeter of the square.


The radius of a circle is increasing at the rate of 0.7 cm/sec. What is the rate of increase of its circumference?


A stone is dropped into a quiet lake and waves move in circles at a speed of 4 cm/sec. At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area increasing?


A man 160 cm tall, walks away from a source of light situated at the top of a pole 6 m high, at the rate of 1.1 m/sec. How fast is the length of his shadow increasing when he is 1 m away from the pole?


A particle moves along the curve y = x3. Find the points on the curve at which the y-coordinate changes three times more rapidly than the x-coordinate.


Find an angle θ whose rate of increase twice is twice the rate of decrease of its cosine ?


The radius of a cylinder is increasing at the rate 2 cm/sec. and its altitude is decreasing at the rate of 3 cm/sec. Find the rate of change of volume when radius is 3 cm and altitude 5 cm.


The volume of metal in a hollow sphere is constant. If the inner radius is increasing at the rate of 1 cm/sec, find the rate of increase of the outer radius when the radii are 4 cm and 8 cm respectively.


Find the point on the curve y2 = 8x for which the abscissa and ordinate change at the same rate ?


The volume of a spherical balloon is increasing at the rate of 25 cm3/sec. Find the rate of change of its surface area at the instant when radius is 5 cm ?


The side of a square is increasing at the rate of 0.1 cm/sec. Find the rate of increase of its perimeter ?


The amount of pollution content added in air in a city due to x diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above questions ?


The distance moved by the particle in time t is given by x = t3 − 12t2 + 6t + 8. At the instant when its acceleration is zero, the velocity is


For what values of x is the rate of increase of x3 − 5x2 + 5x + 8 is twice the rate of increase of x ?


Each side of an equilateral triangle is increasing at the rate of 8 cm/hr. The rate of increase of its area when side is 2 cm, is


Find the rate of change of the area of a circle with respect to its radius r when r = 4 cm.


A 13 m long ladder is leaning against a wall, touching the wall at a certain height from the ground level. The bottom of the ladder is pulled away from the wall, along the ground, at the rate of 2 m/s. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall?


Evaluate:  `int (x(1+x^2))/(1+x^4)dx`


Water is dripping out from a conical funnel of semi-vertical angle `pi/4` at the uniform rate of 2cm2/sec in the surface area, through a tiny hole at the vertex of the bottom. When the slant height of cone is 4 cm, find the rate of decrease of the slant height of water.


The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side


A ladder, 5 meter long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides downwards at the rate of 10 cm/sec, then the rate at which the angle between the floor and the ladder is decreasing when lower end of ladder is 2 metres from the wall is ______.


The radius of a cylinder is increasing at the rate of 3 m/s and its height is decreasing at the rate of 4 m/s. The rate of change of volume when the radius is 4 m and height is 6 m, is ____________.


The radius of a circle is increasing uniformly at the rate of 3 cm per second. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A cylindrical tank of radius 10 feet is being filled with wheat at the rate of 3/4 cubic feet per minute. The then depth of the wheat is increasing at the rate of


If equal sides of an isosceles triangle with fixed base 10 cm are increasing at the rate of 4 cm/sec, how fast is the area of triangle increasing at an instant when all sides become equal?


An edge of a variable cube is increasing at the rate of 10 cm/sec. How fast will the volume of the cube increase if the edge is 5 cm long? 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×