English

An Edge of a Variable Cube is Increasing at the Rate of 3 Cm per Second. How Fast is the Volume of the Cube Increasing When the Edge is 10 Cm Long? - Mathematics

Advertisements
Advertisements

Question

An edge of a variable cube is increasing at the rate of 3 cm per second. How fast is the volume of the cube increasing when the edge is 10 cm long?

Sum

Solution

 Let x be the side and V be the volume of the cube at any time t. Then ,
V=x3
dVdt=3x2dxdt
dVdt=3×(10)2×3[x=10 cm  and dxdt=3cm/sec]
dVdt=900cm3/sec

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Derivative as a Rate Measurer - Exercise 13.2 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 13 Derivative as a Rate Measurer
Exercise 13.2 | Q 2 | Page 19

RELATED QUESTIONS

If y = f (u) is a differential function of u and u = g(x) is a differential function of x, then prove that y = f [g(x)] is a differential function of x and dydx=dydu×dudx


The Volume of cube is increasing at the rate of 9 cm 3/s. How fast is its surfacee area increasing when the length of an edge is 10 cm?


An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?


A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?


Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?


The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.


The side of a square is increasing at the rate of 0.2 cm/sec. Find the rate of increase of the perimeter of the square.


A man 180 cm tall walks at a rate of 2 m/sec. away, from a source of light that is 9 m above the ground. How fast is the length of his shadow increasing when he is 3 m away from the base of light?


A ladder 13 m long leans against a wall. The foot of the ladder is pulled along the ground away from the wall, at the rate of 1.5 m/sec. How fast is the angle θ between the ladder and the ground is changing when the foot of the ladder is 12 m away from the wall.


A particle moves along the curve y = x2 + 2x. At what point(s) on the curve are the x and y coordinates of the particle changing at the same rate?


Find an angle θ whose rate of increase twice is twice the rate of decrease of its cosine ?


A man 2 metres high walks at a uniform speed of 6 km/h away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases ?


A kite is 120 m high and 130 m of string is out. If the kite is moving away horizontally at the rate of 52 m/sec, find the rate at which the string is being paid out.


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of the area of the rectangle.


A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. Find the rate at which its area is increasing when radius is 3.2 cm.


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. How far is the area increasing when the side is 10 cms?


The side of an equilateral triangle is increasing at the rate of 13 cm/sec. Find the rate of increase of its perimeter ?


Find the surface area of a sphere when its volume is changing at the same rate as its radius ?


The radius of a sphere is increasing at the rate of 0.2 cm/sec. The rate at which the volume of the sphere increase when radius is 15 cm, is


The volume of a sphere is increasing at 3 cm3/sec. The rate at which the radius increases when radius is 2 cm, is


The volume of a sphere is increasing at the rate of 4π cm3/sec. The rate of increase of the radius when the volume is 288 π cm3, is


If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is equal to


A man of height 6 ft walks at a uniform speed of 9 ft/sec from a lamp fixed at 15 ft height. The length of his shadow is increasing at the rate of


In a sphere the rate of change of volume is


Evaluate:  x(1+x2)1+x4dx


A ladder 13 m long is leaning against a vertical wall. The bottom of the ladder is dragged away from the wall along the ground at the rate of 2 cm/sec. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then how fast is the slope of curve changing when x = 3?


Water is dripping out from a conical funnel of semi-vertical angle π4 at the uniform rate of 2cm2/sec in the surface area, through a tiny hole at the vertex of the bottom. When the slant height of cone is 4 cm, find the rate of decrease of the slant height of water.


A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of boy is 1.5 m.


x and y are the sides of two squares such that y = x – x2. Find the rate of change of the area of second square with respect to the area of first square.


A particle is moving along the curve x = at2 + bt + c. If ac = b2, then particle would be moving with uniform ____________.


The rate of change of area of a circle with respect to its radius r at r = 6 cm is ____________.


A cylindrical tank of radius 10 feet is being filled with wheat at the rate of 3/4 cubic feet per minute. The then depth of the wheat is increasing at the rate of


A spherical balloon is filled with 4500π cubic meters of helium gas. If a leak in the balloon causes the gas to escape at the rate of 72π cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 49 minutes after the leakage began is ______.


If the circumference of circle is increasing at the constant rate, prove that rate of change of area of circle is directly proportional to its radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.