English

A Man of Height 6 Ft Walks at a Uniform Speed of 9 Ft/Sec from a Lamp Fixed at 15 Ft Height. the Length of His Shadow is Increasing at the Rate of (A) 15 Ft/Sec (B) 9 Ft/Sec - Mathematics

Advertisements
Advertisements

Question

A man of height 6 ft walks at a uniform speed of 9 ft/sec from a lamp fixed at 15 ft height. The length of his shadow is increasing at the rate of

Options

  • 15 ft/sec

  • 9 ft/sec

  •  6 ft/sec

  • none of these

MCQ

Solution

 6 ft/sec
Let AB be the lamp post. Suppose at any time t, the man CD be at a distance of x km from the lamp post and y ft be the length of his shadow CE.

\[\text { Since the triangles ABE and CDE are similar }, \]

\[\frac{AB}{CD} = \frac{AE}{CE}\]

\[\Rightarrow \frac{15}{6} = \frac{x + y}{y}\]

\[ \Rightarrow \frac{x}{y} = \frac{15}{6} - 1\]

\[ \Rightarrow \frac{x}{y} = \frac{3}{2}\]

\[ \Rightarrow y = \frac{2}{3}x\]

\[ \Rightarrow \frac{dy}{dt} = \frac{2}{3}\left( \frac{dx}{dt} \right)\]

\[ \Rightarrow \frac{dy}{dt} = \frac{2}{3} \times 9\]

\[ \Rightarrow \frac{dy}{dt} = 6 \text { ft }/\sec\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Derivative as a Rate Measurer - Exercise 13.4 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 13 Derivative as a Rate Measurer
Exercise 13.4 | Q 23 | Page 26

RELATED QUESTIONS

If y = f (u) is a differential function of u and u = g(x) is a differential function of x, then prove that y = f [g(x)] is a differential function of x and `dy/dx=dy/(du) xx (du)/dx`


The Volume of cube is increasing at the rate of 9 cm 3/s. How fast is its surfacee area increasing when the length of an edge is 10 cm?


The rate of growth of bacteria is proportional to the number present. If, initially, there were
1000 bacteria and the number doubles in one hour, find the number of bacteria after 2½
hours. 

[Take `sqrt2` = 1.414]


Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


The volume of a cube is increasing at the rate of 8 cm3/s. How fast is the surface area increasing when the length of an edge is 12 cm?


The radius of an air bubble is increasing at the rate  `1/2`  cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?


A balloon, which always remains spherical, has a variable diameter  `3/2 (2x +   1)` Find the rate of change of its volume with respect to x.


The total revenue in rupees received from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5. The marginal revenue, when x = 15 is ______.


The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.


Find the rate of change of the area of a circular disc with respect to its circumference when the radius is 3 cm ?


The side of a square sheet is increasing at the rate of 4 cm per minute. At what rate is the area increasing when the side is 8 cm long?


The radius of a circle is increasing at the rate of 0.7 cm/sec. What is the rate of increase of its circumference?


A balloon which always remains spherical, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon is increasing when the radius is 15 cm.


The radius of an air bubble is increasing at the rate of 0.5 cm/sec. At what rate is the volume of the bubble increasing when the radius is 1 cm?


A stone is dropped into a quiet lake and waves move in circles at a speed of 4 cm/sec. At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area increasing?


Find an angle θ which increases twice as fast as its cosine ?


Find an angle θ whose rate of increase twice is twice the rate of decrease of its cosine ?


A kite is 120 m high and 130 m of string is out. If the kite is moving away horizontally at the rate of 52 m/sec, find the rate at which the string is being paid out.


A particle moves along the curve y = (2/3)x3 + 1. Find the points on the curve at which the y-coordinate is changing twice as fast as the x-coordinate ?


A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. Find the rate at which its area is increasing when radius is 3.2 cm.


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. How far is the area increasing when the side is 10 cms?


Find the surface area of a sphere when its volume is changing at the same rate as its radius ?


The amount of pollution content added in air in a city due to x diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above questions ?


The altitude of a cone is 20 cm and its semi-vertical angle is 30°. If the semi-vertical angle is increasing at the rate of 2° per second, then the radius of the base is increasing at the rate of


The volume of a sphere is increasing at 3 cm3/sec. The rate at which the radius increases when radius is 2 cm, is


The distance moved by a particle travelling in straight line in t seconds is given by s = 45t + 11t2 − t3. The time taken by the particle to come to rest is


If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is equal to


A man 2 metres tall walks away from a lamp post 5 metres height at the rate of 4.8 km/hr. The rate of increase of the length of his shadow is


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of


A 13 m long ladder is leaning against a wall, touching the wall at a certain height from the ground level. The bottom of the ladder is pulled away from the wall, along the ground, at the rate of 2 m/s. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall?


Water is dripping out from a conical funnel of semi-vertical angle `pi/4` at the uniform rate of 2cm2/sec in the surface area, through a tiny hole at the vertex of the bottom. When the slant height of cone is 4 cm, find the rate of decrease of the slant height of water.


If the rate of change of the area of the circle is equal to the rate of change of its diameter then its radius is equal to ____________.


The rate of change of volume of a sphere is equal to the rate of change of the radius than its radius equal to ____________.


Let y = f(x) be a function. If the change in one quantity 'y’ varies with another quantity x, then which of the following denote the rate of change of y with respect to x.


A particle moves along the curve 3y = ax3 + 1 such that at a point with x-coordinate 1, y-coordinate is changing twice as fast at x-coordinate. Find the value of a.


A kite is being pulled down by a string that goes through a ring on the ground 8 meters away from the person pulling it. If the string is pulled in at 1 meter per second, how fast is the kite coming down when it is 15 meters high?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×