English

The Volume of a Sphere is Increasing at the Rate of 4π Cm3/Sec. the Rate of Increase of the Radius When the Volume is 288 π Cm3, is (A) 1/4 (B) 1/12 - Mathematics

Advertisements
Advertisements

Question

The volume of a sphere is increasing at the rate of 4π cm3/sec. The rate of increase of the radius when the volume is 288 π cm3, is

Options

  • 1/4

  •  1/12

  •  1/36

  •  1/9

MCQ

Solution

1/36

\[\text { Let r be the radius and V be the volume of the sphere at any time t. Then },\]

\[V=\frac{4}{3}\pi r^3 \]

\[ \Rightarrow \frac{4}{3}\pi r^3 =288\pi\]

\[ \Rightarrow r^3 = \frac{288 \times 3}{4}\]

\[ \Rightarrow r^3 = 216\]

\[ \Rightarrow r = 6\]

\[ \Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}\]

\[ \Rightarrow \frac{dV}{dt} = 4\pi \left( 6 \right)^2 \frac{dr}{dt} \]

\[ \Rightarrow 4\pi = 144\pi\frac{dr}{dt}\]

\[ \Rightarrow \frac{dr}{dt} = \frac{1}{36}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Derivative as a Rate Measurer - Exercise 13.4 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 13 Derivative as a Rate Measurer
Exercise 13.4 | Q 14 | Page 25

RELATED QUESTIONS

The rate of growth of bacteria is proportional to the number present. If, initially, there were
1000 bacteria and the number doubles in one hour, find the number of bacteria after 2½
hours. 

[Take `sqrt2` = 1.414]


A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.


The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.


The total cost C(x) associated with the production of x units of an item is given by C(x) = 0.005x3 – 0.02x2 + 30x + 5000. Find the marginal cost when 3 units are produced, whereby marginal cost we mean the instantaneous rate of change of total cost at any level of output.


Find the rate of change of the total surface area of a cylinder of radius r and height h, when the radius varies?


Find the rate of change of the volume of a sphere with respect to its diameter ?


Find the rate of change of the volume of a sphere with respect to its surface area when the radius is 2 cm ?


Find the rate of change of the volume of a ball with respect to its radius r. How fast is the volume changing with respect to the radius when the radius is 2 cm?


The total cost C (x) associated with the production of x units of an item is given by C (x) = 0.007x3 − 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced ?


The radius of a spherical soap bubble is increasing at the rate of 0.2 cm/sec. Find the rate of increase of its surface area, when the radius is 7 cm.


The radius of an air bubble is increasing at the rate of 0.5 cm/sec. At what rate is the volume of the bubble increasing when the radius is 1 cm?


A stone is dropped into a quiet lake and waves move in circles at a speed of 4 cm/sec. At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area increasing?


A man 180 cm tall walks at a rate of 2 m/sec. away, from a source of light that is 9 m above the ground. How fast is the length of his shadow increasing when he is 3 m away from the base of light?


Find the point on the curve y2 = 8x for which the abscissa and ordinate change at the same rate ?


The volume of a sphere is increasing at 3 cubic centimeter per second. Find the rate of increase of the radius, when the radius is 2 cms ?


If the rate of change of volume of a sphere is equal to the rate of change of its radius, find the radius of the sphere ?


The radius of a sphere is changing at the rate of 0.1 cm/sec. The rate of change of its surface area when the radius is 200 cm is


A cylindrical vessel of radius 0.5 m is filled with oil at the rate of 0.25 π m3/minute. The rate at which the surface of the oil is rising, is


The altitude of a cone is 20 cm and its semi-vertical angle is 30°. If the semi-vertical angle is increasing at the rate of 2° per second, then the radius of the base is increasing at the rate of


The radius of the base of a cone is increasing at the rate of 3 cm/minute and the altitude is decreasing at the rate of 4 cm/minute. The rate of change of lateral surface when the radius = 7 cm and altitude 24 cm is


The volume of a sphere is increasing at 3 cm3/sec. The rate at which the radius increases when radius is 2 cm, is


If the rate of change of volume of a sphere is equal to the rate of change of its radius, then its radius is equal to


The equation of motion of a particle is s = 2t2 + sin 2t, where s is in metres and is in seconds. The velocity of the particle when its acceleration is 2 m/sec2, is


The radius of a circular plate is increasing at the rate of 0.01 cm/sec. The rate of increase of its area when the radius is 12 cm, is


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then how fast is the slope of curve changing when x = 3?


The rate of change of volume of a sphere with respect to its surface area, when the radius is 2 cm, is ______.


A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of boy is 1.5 m.


x and y are the sides of two squares such that y = x – x2. Find the rate of change of the area of second square with respect to the area of first square.


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is ______.


The instantaneous rate of change at t = 1 for the function f (t) = te-t + 9 is ____________.


A particle is moving along the curve x = at2 + bt + c. If ac = b2, then particle would be moving with uniform ____________.


Let y = f(x) be a function. If the change in one quantity 'y’ varies with another quantity x, then which of the following denote the rate of change of y with respect to x.


The radius of a circle is increasing uniformly at the rate of 3 cm per second. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?


A particle moves along the curve 3y = ax3 + 1 such that at a point with x-coordinate 1, y-coordinate is changing twice as fast at x-coordinate. Find the value of a.


Given that `1/y + 1/x = 1/12` and y decreases at a rate of 1 cms–1, find the rate of change of x when x = 5 cm and y = 1 cm.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×