English

The rate of change of volume of a sphere with respect to its surface area, when the radius is 2 cm, is ______. - Mathematics

Advertisements
Advertisements

Question

The rate of change of volume of a sphere with respect to its surface area, when the radius is 2 cm, is ______.

Fill in the Blanks

Solution

The rate of change of volume of a sphere with respect to its surface area, when the radius is 2 cm, is 1.

Explanation:

1 cm3/cm2

v = `4/3  pi"r"^3`

⇒ `"dv"/"dr" = 4pi"r"^2`

s = `4pi"r"^2`

⇒ `"ds"/"dr"` = 8πr

⇒ `"dv"/"ds" = pi/2`

= 1 at r = 2. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Solved Examples [Page 135]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Solved Examples | Q 29 | Page 135

RELATED QUESTIONS

Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?


A balloon, which always remains spherical, has a variable diameter  `3/2 (2x +   1)` Find the rate of change of its volume with respect to x.


An edge of a variable cube is increasing at the rate of 3 cm per second. How fast is the volume of the cube increasing when the edge is 10 cm long?


The side of a square is increasing at the rate of 0.2 cm/sec. Find the rate of increase of the perimeter of the square.


The radius of an air bubble is increasing at the rate of 0.5 cm/sec. At what rate is the volume of the bubble increasing when the radius is 1 cm?


Find an angle θ which increases twice as fast as its cosine ?


Water is running into an inverted cone at the rate of π cubic metres per minute. The height of the cone is 10 metres, and the radius of its base is 5 m. How fast the water level is rising when the water stands 7.5 m below the base.


The volume of a cube is increasing at the rate of 9 cm3/sec. How fast is the surface area increasing when the length of an edge is 10 cm?


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of the area of the rectangle.


If a particle moves in a straight line such that the distance travelled in time t is given by s = t3 − 6t2+ 9t + 8. Find the initial velocity of the particle ?


The side of a square is increasing at the rate of 0.1 cm/sec. Find the rate of increase of its perimeter ?


Find the surface area of a sphere when its volume is changing at the same rate as its radius ?


For what values of x is the rate of increase of x3 − 5x2 + 5x + 8 is twice the rate of increase of x ?


The distance moved by a particle travelling in straight line in t seconds is given by s = 45t + 11t2 − t3. The time taken by the particle to come to rest is


If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is equal to


If s = t3 − 4t2 + 5 describes the motion of a particle, then its velocity when the acceleration vanishes, is


A man 2 metres tall walks away from a lamp post 5 metres height at the rate of 4.8 km/hr. The rate of increase of the length of his shadow is


Water is dripping out at a steady rate of 1 cu cm/sec through a tiny hole at the vertex of the conical vessel, whose axis is vertical. When the slant height of water in the vessel is 4 cm, find the rate of decrease of slant height, where the vertical angle of the conical vessel is `pi/6`


Two men A and B start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being seperated.


The instantaneous rate of change at t = 1 for the function f (t) = te-t + 9 is ____________.


The rate of change of area of a circle with respect to its radius r at r = 6 cm is ____________.


If the rate of change of the area of the circle is equal to the rate of change of its diameter then its radius is equal to ____________.


A particle moves along the curve 3y = ax3 + 1 such that at a point with x-coordinate 1, y-coordinate is changing twice as fast at x-coordinate. Find the value of a.


The median of an equilateral triangle is increasing at the ratio of `2sqrt(3)` cm/s. Find the rate at which its side is increasing.


A kite is being pulled down by a string that goes through a ring on the ground 8 meters away from the person pulling it. If the string is pulled in at 1 meter per second, how fast is the kite coming down when it is 15 meters high?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×