हिंदी

Two men A and B start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being - Mathematics

Advertisements
Advertisements

प्रश्न

Two men A and B start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being seperated.

योग

उत्तर


Let P be any point at which the two roads are inclined at an angle of 45°.

Two men A and B are moving along the roads PA and PB respectively with the same speed ‘V’

Let A and B be their final positions such that AB = y

∠APB = 45° and they move with the same speed.

∴ ΔAPB is an isosceles triangle.

Draw PQ ⊥ AB

AB = y

∴ AQ = `y/2` and PA = PB = x  ...(Let)

∠APQ = ∠BPQ

= `45/2`

= `22 1/2^circ`

[∵ In an isosceles Δ, the altitude drawn from the vertex, bisects the base]

Now in right ΔAPQ,

`sin 22 1/2^circ = "AQ"/"AP"`

⇒ `sin 22 1/2^circ = 2/x = y/(2x)`

⇒ y = `2x * sin 22 1/2^circ`

Differentiating both sides w.r.t, t, we get

`"dy"/"dt" = 2 * "dx"/"dt" * sin 22 1/2^circ`

= `2 * "V" * sqrt(2 - sqrt(2))/2`  ......`[because sin 22 1/2^circ = sqrt(2 - sqrt(2))/2]`

= `sqrt(2 - sqrt(2))` V m/s

Hence, the rate of their separation is `sqrt(2 - sqrt(2))` V unit/s.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 4 | पृष्ठ १३५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If y = f (u) is a differential function of u and u = g(x) is a differential function of x, then prove that y = f [g(x)] is a differential function of x and `dy/dx=dy/(du) xx (du)/dx`


Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?


A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?


Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?


The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) = 0.007x3 – 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced


The total revenue in rupees received from the sale of x units of a product is given by R(x) = 13x2 + 26x + 15. Find the marginal revenue when x = 7.


The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base?


The total cost C(x) associated with the production of x units of an item is given by C(x) = 0.005x3 – 0.02x2 + 30x + 5000. Find the marginal cost when 3 units are produced, whereby marginal cost we mean the instantaneous rate of change of total cost at any level of output.


Find the rate of change of the total surface area of a cylinder of radius r and height h, when the radius varies?


An edge of a variable cube is increasing at the rate of 3 cm per second. How fast is the volume of the cube increasing when the edge is 10 cm long?


The side of a square is increasing at the rate of 0.2 cm/sec. Find the rate of increase of the perimeter of the square.


The radius of an air bubble is increasing at the rate of 0.5 cm/sec. At what rate is the volume of the bubble increasing when the radius is 1 cm?


A man 180 cm tall walks at a rate of 2 m/sec. away, from a source of light that is 9 m above the ground. How fast is the length of his shadow increasing when he is 3 m away from the base of light?


A particle moves along the curve y = x2 + 2x. At what point(s) on the curve are the x and y coordinates of the particle changing at the same rate?


Find an angle θ which increases twice as fast as its cosine ?


The radius of a cylinder is increasing at the rate 2 cm/sec. and its altitude is decreasing at the rate of 3 cm/sec. Find the rate of change of volume when radius is 3 cm and altitude 5 cm.


The volume of a spherical balloon is increasing at the rate of 25 cm3/sec. Find the rate of change of its surface area at the instant when radius is 5 cm ?


If a particle moves in a straight line such that the distance travelled in time t is given by s = t3 − 6t2+ 9t + 8. Find the initial velocity of the particle ?


The side of a square is increasing at the rate of 0.1 cm/sec. Find the rate of increase of its perimeter ?


The radius of a circle is increasing at the rate of 0.5 cm/sec. Find the rate of increase of its circumference ?


The side of an equilateral triangle is increasing at the rate of \[\frac{1}{3}\] cm/sec. Find the rate of increase of its perimeter ?


If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is equal to


The diameter of a circle is increasing at the rate of 1 cm/sec. When its radius is π, the rate of increase of its area is


Find the rate of change of the area of a circle with respect to its radius r when r = 4 cm.


A man, 2m tall, walks at the rate of `1 2/3` m/s towards a street light which is `5 1/3`m above the ground. At what rate is the tip of his shadow moving? At what rate is the length of the shadow changing when he is `3 1/3`m from the base of the light?


The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side


What is the rate of change of the area of a circle with respect to its radius when, r = 3 cm


Given that `1/y + 1/x = 1/12` and y decreases at a rate of 1 cms–1, find the rate of change of x when x = 5 cm and y = 1 cm.


A kite is being pulled down by a string that goes through a ring on the ground 8 meters away from the person pulling it. If the string is pulled in at 1 meter per second, how fast is the kite coming down when it is 15 meters high?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×