हिंदी

Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How - Mathematics

Advertisements
Advertisements

प्रश्न

Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?

योग

उत्तर

Let at any instant of time t, the radius of the base of the cone be r, its height be h and the volume of the sand cone be V, then

`h = 1/6 r`

= r = 6h

and `V = 1/3 pir^2 h = 1/3 pi (6h)^2 h = 12 pi h^3`           ....(i)

Differentiating (i) w.r.t. t, we get,

`(dV)/dt = (12 pi) (3h^2  (dh)/dt)`

= 12 cm3 /sec

`= 36 pi (4 cm)^2  (dh)/dt`

(∵ h = 4 cm and `(dV)/dt = 12` cm2/sec)

`= (dh)/dt = 12/ (36 pixx 16)` cm /sec

`= 1/(48 pi)` cm/sec

∴ Rate of increase of the height of the sand cone `1/(48 pi)` cm/sec.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.1 [पृष्ठ १९८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.1 | Q 14 | पृष्ठ १९८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?


A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.


The total revenue in rupees received from the sale of x units of a product is given by R(x) = 13x2 + 26x + 15. Find the marginal revenue when x = 7.


The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.


The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm


Find the rate of change of the total surface area of a cylinder of radius r and height h, when the radius varies?


Find the rate of change of the volume of a sphere with respect to its diameter ?


Find the rate of change of the volume of a cone with respect to the radius of its base ?


Find the rate of change of the volume of a ball with respect to its radius r. How fast is the volume changing with respect to the radius when the radius is 2 cm?


The total revenue received from the sale of x units of a product is given by R (x) = 13x2 + 26x + 15. Find the marginal revenue when x = 7 ?


An edge of a variable cube is increasing at the rate of 3 cm per second. How fast is the volume of the cube increasing when the edge is 10 cm long?


The radius of a spherical soap bubble is increasing at the rate of 0.2 cm/sec. Find the rate of increase of its surface area, when the radius is 7 cm.


Find an angle θ which increases twice as fast as its cosine ?


A man 2 metres high walks at a uniform speed of 6 km/h away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases ?


A particle moves along the curve y = (2/3)x3 + 1. Find the points on the curve at which the y-coordinate is changing twice as fast as the x-coordinate ?


Find the point on the curve y2 = 8x for which the abscissa and ordinate change at the same rate ?


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of the area of the rectangle.


The side of a square is increasing at the rate of 0.1 cm/sec. Find the rate of increase of its perimeter ?


If the rate of change of volume of a sphere is equal to the rate of change of its radius, find the radius of the sphere ?


The radius of a sphere is changing at the rate of 0.1 cm/sec. The rate of change of its surface area when the radius is 200 cm is


A cylindrical vessel of radius 0.5 m is filled with oil at the rate of 0.25 π m3/minute. The rate at which the surface of the oil is rising, is


The coordinates of the point on the ellipse 16x2 + 9y2 = 400 where the ordinate decreases at the same rate at which the abscissa increases, are


The diameter of a circle is increasing at the rate of 1 cm/sec. When its radius is π, the rate of increase of its area is


A ladder 13 m long is leaning against a vertical wall. The bottom of the ladder is dragged away from the wall along the ground at the rate of 2 cm/sec. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall.


A man, 2m tall, walks at the rate of `1 2/3` m/s towards a street light which is `5 1/3`m above the ground. At what rate is the tip of his shadow moving? At what rate is the length of the shadow changing when he is `3 1/3`m from the base of the light?


The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side


x and y are the sides of two squares such that y = x – x2. Find the rate of change of the area of second square with respect to the area of first square.


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is ______.


If the rate of change of the area of the circle is equal to the rate of change of its diameter then its radius is equal to ____________.


A cylindrical tank of radius 10 feet is being filled with wheat at the rate of 3/4 cubic feet per minute. The then depth of the wheat is increasing at the rate of


A spherical balloon is being inflated at the rate of 35 cc/min. The rate of increase in the surface area (in cm2/min.) of the balloon when its diameter is 14 cm, is ______.


If equal sides of an isosceles triangle with fixed base 10 cm are increasing at the rate of 4 cm/sec, how fast is the area of triangle increasing at an instant when all sides become equal?


A kite is being pulled down by a string that goes through a ring on the ground 8 meters away from the person pulling it. If the string is pulled in at 1 meter per second, how fast is the kite coming down when it is 15 meters high?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×