हिंदी

If a Particle Moves in a Straight Line Such that the Distance Travelled in Time T is Given by S = T3 − 6t2 + 9t + 8. Find the Initial Velocity of the Particle. - Mathematics

Advertisements
Advertisements

प्रश्न

If a particle moves in a straight line such that the distance travelled in time t is given by s = t3 − 6t2+ 9t + 8. Find the initial velocity of the particle ?

संक्षेप में उत्तर
योग

उत्तर

\[s = t^3 - 6 t^2 + 9t + 8\]

\[ \Rightarrow \frac{ds}{dt} = 3 t^2 - 12t + 9\]

\[\text { Initial velocity=Velocity at t }=0\]

\[ \Rightarrow \frac{ds}{dt} = 3 \left( 0 \right)^2 - 12\left( 0 \right) + 9\]

\[ \Rightarrow \frac{ds}{dt}=9 \text { units/unit time }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Derivative as a Rate Measurer - Exercise 13.3 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 13 Derivative as a Rate Measurer
Exercise 13.3 | Q 1 | पृष्ठ २४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The rate of growth of bacteria is proportional to the number present. If, initially, there were
1000 bacteria and the number doubles in one hour, find the number of bacteria after 2½
hours. 

[Take `sqrt2` = 1.414]


The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?


A particle moves along the curve 6y = x3 +2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.


The radius of an air bubble is increasing at the rate  `1/2`  cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?


Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?


The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) = 0.007x3 – 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced


The volume of a sphere is increasing at the rate of 8 cm3/s. Find the rate at which its surface area is increasing when the radius of the sphere is 12 cm.


Find the rate of change of the volume of a sphere with respect to its surface area when the radius is 2 cm ?


The total revenue received from the sale of x units of a product is given by R (x) = 13x2 + 26x + 15. Find the marginal revenue when x = 7 ?


An edge of a variable cube is increasing at the rate of 3 cm per second. How fast is the volume of the cube increasing when the edge is 10 cm long?


The radius of a circle is increasing at the rate of 0.7 cm/sec. What is the rate of increase of its circumference?


A man 160 cm tall, walks away from a source of light situated at the top of a pole 6 m high, at the rate of 1.1 m/sec. How fast is the length of his shadow increasing when he is 1 m away from the pole?


The top of a ladder 6 metres long is resting against a vertical wall on a level pavement, when the ladder begins to slide outwards. At the moment when the foot of the ladder is 4 metres from the wall, it is sliding away from the wall at the rate of 0.5 m/sec. How fast is the top-sliding downwards at this instance?
How far is the foot from the wall when it and the top are moving at the same rate?


The radius of a cylinder is increasing at the rate 2 cm/sec. and its altitude is decreasing at the rate of 3 cm/sec. Find the rate of change of volume when radius is 3 cm and altitude 5 cm.


The volume of metal in a hollow sphere is constant. If the inner radius is increasing at the rate of 1 cm/sec, find the rate of increase of the outer radius when the radii are 4 cm and 8 cm respectively.


A kite is 120 m high and 130 m of string is out. If the kite is moving away horizontally at the rate of 52 m/sec, find the rate at which the string is being paid out.


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of the area of the rectangle.


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. How far is the area increasing when the side is 10 cms?


The radius of a circle is increasing at the rate of 0.5 cm/sec. Find the rate of increase of its circumference ?


If the rate of change of volume of a sphere is equal to the rate of change of its radius, find the radius of the sphere ?


The radius of a sphere is changing at the rate of 0.1 cm/sec. The rate of change of its surface area when the radius is 200 cm is


A cylindrical vessel of radius 0.5 m is filled with oil at the rate of 0.25 π m3/minute. The rate at which the surface of the oil is rising, is


The coordinates of the point on the ellipse 16x2 + 9y2 = 400 where the ordinate decreases at the same rate at which the abscissa increases, are


The radius of a sphere is increasing at the rate of 0.2 cm/sec. The rate at which the volume of the sphere increase when radius is 15 cm, is


The volume of a sphere is increasing at 3 cm3/sec. The rate at which the radius increases when radius is 2 cm, is


The volume of a sphere is increasing at the rate of 4π cm3/sec. The rate of increase of the radius when the volume is 288 π cm3, is


If the rate of change of volume of a sphere is equal to the rate of change of its radius, then its radius is equal to


If s = t3 − 4t2 + 5 describes the motion of a particle, then its velocity when the acceleration vanishes, is


A man 2 metres tall walks away from a lamp post 5 metres height at the rate of 4.8 km/hr. The rate of increase of the length of his shadow is


Water is dripping out from a conical funnel of semi-vertical angle `pi/4` at the uniform rate of 2cm2/sec in the surface area, through a tiny hole at the vertex of the bottom. When the slant height of cone is 4 cm, find the rate of decrease of the slant height of water.


The rate of change of volume of a sphere with respect to its surface area, when the radius is 2 cm, is ______.


A man, 2m tall, walks at the rate of `1 2/3` m/s towards a street light which is `5 1/3`m above the ground. At what rate is the tip of his shadow moving? At what rate is the length of the shadow changing when he is `3 1/3`m from the base of the light?


A particle is moving along the curve x = at2 + bt + c. If ac = b2, then particle would be moving with uniform ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×