हिंदी

The Volume of a Sphere is Increasing at 3 Cubic Centimeter per Second. Find the Rate of Increase of the Radius, When the Radius is 2 Cms ? - Mathematics

Advertisements
Advertisements

प्रश्न

The volume of a sphere is increasing at 3 cubic centimeter per second. Find the rate of increase of the radius, when the radius is 2 cms ?

योग

उत्तर

\[\text { Let r be the radius and V be the volume of the sphere at any time   t.Then },\]

\[V = \frac{4}{3}\pi r^3 \]

\[ \Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}\]

\[ \Rightarrow \frac{dr}{dt} = \frac{1}{4\pi r^2}\frac{dV}{dt}\]

\[ \Rightarrow \frac{dr}{dt} = \frac{3}{4\pi \left( 2 \right)^2} \left[ \because r = 2 \text { cm and } \frac{dV}{dt} = 3 {cm}^3 /\sec \right]\]

\[ \Rightarrow \frac{dr}{dt} = \frac{3}{16\pi} \text{cm} /\sec\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Derivative as a Rate Measurer - Exercise 13.3 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 13 Derivative as a Rate Measurer
Exercise 13.3 | Q 2 | पृष्ठ २४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The Volume of cube is increasing at the rate of 9 cm 3/s. How fast is its surfacee area increasing when the length of an edge is 10 cm?


A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?


The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.


A particle moves along the curve 6y = x3 +2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.


The radius of an air bubble is increasing at the rate  `1/2`  cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?


A balloon, which always remains spherical, has a variable diameter  `3/2 (2x +   1)` Find the rate of change of its volume with respect to x.


The volume of a sphere is increasing at the rate of 8 cm3/s. Find the rate at which its surface area is increasing when the radius of the sphere is 12 cm.


Find the rate of change of the area of a circular disc with respect to its circumference when the radius is 3 cm ?


The radius of a spherical soap bubble is increasing at the rate of 0.2 cm/sec. Find the rate of increase of its surface area, when the radius is 7 cm.


A man 2 metres high walks at a uniform speed of 5 km/hr away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases.


A balloon in the form of a right circular cone surmounted by a hemisphere, having a diameter equal to the height of the cone, is being inflated. How fast is its volume changing with respect to its total height h, when h = 9 cm.


Water is running into an inverted cone at the rate of π cubic metres per minute. The height of the cone is 10 metres, and the radius of its base is 5 m. How fast the water level is rising when the water stands 7.5 m below the base.


Sand is being poured onto a conical pile at the constant rate of 50 cm3/ minute such that the height of the cone is always one half of the radius of its base. How fast is the height of the pile increasing when the sand is 5 cm deep ?


A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. Find the rate at which its area is increasing when radius is 3.2 cm.


The side of a square is increasing at the rate of 0.1 cm/sec. Find the rate of increase of its perimeter ?


Find the surface area of a sphere when its volume is changing at the same rate as its radius ?


If \[V = \frac{4}{3}\pi r^3\] ,  at what rate in cubic units is V increasing when r = 10 and \[\frac{dr}{dt} = 0 . 01\] ?  _________________


A cone whose height is always equal to its diameter is increasing in volume at the rate of 40 cm3/sec. At what rate is the radius increasing when its circular base area is 1 m2?


A cylindrical vessel of radius 0.5 m is filled with oil at the rate of 0.25 π m3/minute. The rate at which the surface of the oil is rising, is


The volume of a sphere is increasing at the rate of 4π cm3/sec. The rate of increase of the radius when the volume is 288 π cm3, is


If s = t3 − 4t2 + 5 describes the motion of a particle, then its velocity when the acceleration vanishes, is


The equation of motion of a particle is s = 2t2 + sin 2t, where s is in metres and is in seconds. The velocity of the particle when its acceleration is 2 m/sec2, is


The radius of a circular plate is increasing at the rate of 0.01 cm/sec. The rate of increase of its area when the radius is 12 cm, is


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of


A 13 m long ladder is leaning against a wall, touching the wall at a certain height from the ground level. The bottom of the ladder is pulled away from the wall, along the ground, at the rate of 2 m/s. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall?


A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of boy is 1.5 m.


The radius of a cylinder is increasing at the rate of 3 m/s and its height is decreasing at the rate of 4 m/s. The rate of change of volume when the radius is 4 m and height is 6 m, is ____________.


If the rate of change of the area of the circle is equal to the rate of change of its diameter then its radius is equal to ____________.


If the rate of change of volume of a sphere is equal to the rate of change of its radius then the surface area of a sphere is ____________.


A man 1.6 m tall walks at the rate of 0.3 m/sec away from a street light that is 4 m above the ground. At what rate is the tip of his shadow moving? At what rate is his shadow lengthening?


A spherical balloon is being inflated at the rate of 35 cc/min. The rate of increase in the surface area (in cm2/min.) of the balloon when its diameter is 14 cm, is ______.


If the circumference of circle is increasing at the constant rate, prove that rate of change of area of circle is directly proportional to its radius.


If equal sides of an isosceles triangle with fixed base 10 cm are increasing at the rate of 4 cm/sec, how fast is the area of triangle increasing at an instant when all sides become equal?


Given that `1/y + 1/x = 1/12` and y decreases at a rate of 1 cms–1, find the rate of change of x when x = 5 cm and y = 1 cm.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×