हिंदी

Water is Running into an Inverted Cone at the Rate of π Cubic Metres per Minute. the Height of the Cone is 10 Metres, and the Radius of Its Base is 5 M. How Fast the Water Level is - Mathematics

Advertisements
Advertisements

प्रश्न

Water is running into an inverted cone at the rate of π cubic metres per minute. The height of the cone is 10 metres, and the radius of its base is 5 m. How fast the water level is rising when the water stands 7.5 m below the base.

योग

उत्तर

\[\text{ Let r be the radius, h be the height and V be the volume of the cone at any time t } .\]
\[\text { Then }, \]
\[V=\frac{1}{3}\pi r^2 h\]
\[ \Rightarrow \frac{dV}{dt} = \frac{1}{3}\pi r^2 \frac{dh}{dt}+\frac{2}{3}\pi r h\frac{dr}{dt}\]
\[\text { Now,}\]
\[\frac{h}{r}=\frac{10}{5}\text{or r}=\frac{h}{2}\text { and }\frac{dh}{dt}=2\frac{dr}{dt}\]
\[\Rightarrow\frac{dV}{dt} = \frac{1}{3}\pi \left( \frac{h}{2} \right)^2 \frac{dh}{dt}+\frac{2}{3}\pi\left( \frac{h}{2} \right)h\frac{1}{2}\frac{dh}{dt}\]
\[\Rightarrow\frac{dV}{dt} = \frac{\pi}{3}\left[ \frac{h^2}{4}\frac{dh}{dt}+\frac{h^2}{2}\frac{dh}{dt} \right]\]
\[\Rightarrow\frac{dV}{dt}=\frac{\pi}{3}\times\frac{3 h^2 dh}{4dt}\]
\[\Rightarrow\frac{dV}{dt}=\frac{\pi h^2}{4}\frac{dh}{dt}\]
\[ \Rightarrow \frac{\pi h^2}{4}\frac{dh}{dt} = \pi\]
\[ \Rightarrow \frac{dh}{dt} = \frac{4}{h^2}\]
\[ \Rightarrow \frac{dh}{dt} = \frac{4}{\left( 2 . 5 \right)^2}\]
\[ \Rightarrow \frac{dh}{dt} = \text{0 . 64 m}/\min\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Derivative as a Rate Measurer - Exercise 13.2 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 13 Derivative as a Rate Measurer
Exercise 13.2 | Q 19 | पृष्ठ २०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The Volume of cube is increasing at the rate of 9 cm 3/s. How fast is its surfacee area increasing when the length of an edge is 10 cm?


A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.


The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) = 0.007x3 – 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced


The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm


Find the rate of change of the total surface area of a cylinder of radius r and height h, when the radius varies?


Find the rate of change of the volume of a cone with respect to the radius of its base ?


Find the rate of change of the volume of a ball with respect to its radius r. How fast is the volume changing with respect to the radius when the radius is 2 cm?


The money to be spent for the welfare of the employees of a firm is proportional to the rate of change of its total revenue (Marginal revenue). If the total revenue (in rupees) recieved from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5, find the marginal revenue, when x = 5, and write which value does the question indicate ?


The radius of a spherical soap bubble is increasing at the rate of 0.2 cm/sec. Find the rate of increase of its surface area, when the radius is 7 cm.


A man 160 cm tall, walks away from a source of light situated at the top of a pole 6 m high, at the rate of 1.1 m/sec. How fast is the length of his shadow increasing when he is 1 m away from the pole?


A ladder 13 m long leans against a wall. The foot of the ladder is pulled along the ground away from the wall, at the rate of 1.5 m/sec. How fast is the angle θ between the ladder and the ground is changing when the foot of the ladder is 12 m away from the wall.


A man 2 metres high walks at a uniform speed of 6 km/h away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases ?


The radius of a cylinder is increasing at the rate 2 cm/sec. and its altitude is decreasing at the rate of 3 cm/sec. Find the rate of change of volume when radius is 3 cm and altitude 5 cm.


A kite is 120 m high and 130 m of string is out. If the kite is moving away horizontally at the rate of 52 m/sec, find the rate at which the string is being paid out.


The volume of a spherical balloon is increasing at the rate of 25 cm3/sec. Find the rate of change of its surface area at the instant when radius is 5 cm ?


The radius of a circle is increasing at the rate of 0.5 cm/sec. Find the rate of increase of its circumference ?


The side of an equilateral triangle is increasing at the rate of \[\frac{1}{3}\] cm/sec. Find the rate of increase of its perimeter ?


A ladder, 5 metre long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides down wards at the rate of 10 cm/sec, then find the rate at which the angle between the floor and ladder is decreasing when lower end of ladder is 2 metres from the wall ?


The distance moved by the particle in time t is given by x = t3 − 12t2 + 6t + 8. At the instant when its acceleration is zero, the velocity is


The volume of a sphere is increasing at 3 cm3/sec. The rate at which the radius increases when radius is 2 cm, is


If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is equal to


Evaluate:  `int (x(1+x^2))/(1+x^4)dx`


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then how fast is the slope of curve changing when x = 3?


Water is dripping out at a steady rate of 1 cu cm/sec through a tiny hole at the vertex of the conical vessel, whose axis is vertical. When the slant height of water in the vessel is 4 cm, find the rate of decrease of slant height, where the vertical angle of the conical vessel is `pi/6`


If the area of a circle increases at a uniform rate, then prove that perimeter varies inversely as the radius


A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of boy is 1.5 m.


If the rate of change of the area of the circle is equal to the rate of change of its diameter then its radius is equal to ____________.


The rate of change of volume of a sphere is equal to the rate of change of the radius than its radius equal to ____________.


Let y = f(x) be a function. If the change in one quantity 'y’ varies with another quantity x, then which of the following denote the rate of change of y with respect to x.


The radius of a circle is increasing uniformly at the rate of 3 cm per second. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A cylindrical tank of radius 10 feet is being filled with wheat at the rate of 3/4 cubic feet per minute. The then depth of the wheat is increasing at the rate of


A man 1.6 m tall walks at the rate of 0.3 m/sec away from a street light that is 4 m above the ground. At what rate is the tip of his shadow moving? At what rate is his shadow lengthening?


The median of an equilateral triangle is increasing at the ratio of `2sqrt(3)` cm/s. Find the rate at which its side is increasing.


A kite is being pulled down by a string that goes through a ring on the ground 8 meters away from the person pulling it. If the string is pulled in at 1 meter per second, how fast is the kite coming down when it is 15 meters high?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×