Advertisements
Advertisements
Question
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
Solution
The two circles intersect orthogonally if the angle between the tangents drawn to the two circles at the point of their intersection is 90°.
Equation of the two circles are given as
2x = y2 ......(i)
And 2xy = k ......(ii)
Differentiating eq. (i) and (ii) w.r.t. x, we get
2.1 = `2y * "dy"/"dx"`
⇒ `"dy"/"dx" = 1/y`
⇒ m1 = `1/y` ......(m1 = slope of the tangent)
⇒ 2xy = k
⇒ `2[x * "dy"/"dx" + y * 1]` = 0
∴ `"dy"/"dx" = - y/x`
⇒ m2 = `- y/x` ......[m2 = slope of the other tangent]
If the two tangents are perpendicular to each other,
Then m1 × m2 = – 1
⇒ `1/y xx (- y/x)` = – 1
⇒ `1/x` = 1
⇒ x = 1
Now solving 2x = y2 ......[From (i)]
And 2xy = k .....[From (ii)]
From equation (ii)
y = `"k"/(2x)`
Putting the value of y in equation (i)
2x = `("k"/(2x))^2`
⇒ 2x = `"k"^2/(4x^2)`
⇒ 8x3 = k2
⇒ 8(1)3 = k2
⇒ 8 = k2
Hence, the required condition is k2 = 8.
APPEARS IN
RELATED QUESTIONS
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.